Paper 1 | Objectives | 48 Questions
WASSCE/WAEC MAY/JUNE
Year: 2013
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
DAAD scholarship to assist Sub-Saharan African students fleeing war in Ukraine to complete their studies
These are the three things to do in test preparation for higher grades and excellent performance.
Good jobs available to people without a college degree, how to get good job without a college degree?
# | Question | Ans |
---|---|---|
1. |
Multiply 2.7 x 10-4 by 6.3 x 106 and leave your answers in standard form A. 1.7 x 103 B. 1.70 x 103 C. 1.701 x 103 D. 17.01 x 103
Show Content
Detailed Solution2.7 x 10-4 x 6.3 x 106= 2.7 x 6.3 x 10-4 x 106 = 17.01 x 10-4 + 6 = 17.01 x 102 = 1.701 x 101 x 102 = 1.701 x 101 + 2 = 1.701 x 103 |
|
2. |
If 9(2 - x) = 3, find x A. 1 B. \(\frac{3}{2}\) C. 2 D. \(\frac{5}{2}\)
Show Content
Detailed Solution9(2 - x) = 332(2 - x) = 3 2(2 - x) = 1 4 - 2x = 1 -2x = 1 - 4 -2x = -3 x = \(\frac{-3}{-2}\) x = \(\frac{3}{2}\) |
|
3. |
In what number base is the addition 465 + 24 + 225 = 1050? A. ten B. nine C. eight D. seven |
D |
4. |
Simplify \(\frac{1\frac{7}{8} \times 2\frac{2}{5}}{6\frac{3}{4} \div \frac{3}{4}}\) A. 9 B. 4\(\frac{1}{2}\) C. 2 D. \(\frac{1}{2}\)
Show Content
Detailed Solution\(\frac{1\frac{7}{8} \times 2\frac{2}{5}}{6\frac{3}{4} \div \frac{3}{4}}\)from numerator \(1 \frac{7}{8} \times 2 \frac{2}{5}\) = \(\frac{15}{8} \times \frac{12}{5}\) = \(\frac{3 \times 3}{2 \times 1} = \frac{9}{2}\) from denominator \(6\frac{3}{4} \div \frac{3}{4}\) = \(\frac{27}{4} \div \frac{3}{4}\) = \(\frac{27}{4} \times \frac{4}{3}\) = \(\frac{9 \times 1}{1 \times 1} = \frac{9}{1}\) \(\frac{9}{2} \div \frac{9}{1} = \frac{9}{2} \times \frac{1}{9}\) = \(\frac{1}{2}\) |
|
5. |
If Un = n(n2 + 1), evaluate U5 - U4 A. 18 B. 56 C. 62 D. 80
Show Content
Detailed SolutionUn = n(n2 + 1)U5 = 5(2 + 1) = 5(25 + 1) = 5(26) = 130 U4 = 4(42 + 1) = 4(16 + 1) = 4(17) = 68 U5 - U4 = 130 - 68 = 62 |
|
6. |
If \(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\), find K A. -2 B. -1 C. 1 D. 2
Show Content
Detailed Solution\(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\)\(\sqrt{50} - \frac{2}{\sqrt{2}}\) = K\(\sqrt{8}\) = \(\sqrt{2} \times 25 - \frac{2}{\sqrt{2}}\) = K \(\sqrt{4 \times 2}\) \(\frac{5\sqrt{2}}{1} - \frac{2}{\sqrt{2}}\) = 2K\(\sqrt{2}\) \(\frac{5\sqrt{4} - 2}{\sqrt{2}} = 2K\sqrt{2}\) \(\frac{10 - 2}{\sqrt{2}} = 2K \sqrt{2}\) \(\frac{8}{\sqrt{2}} = \frac{2K\sqrt{2}}{1}\) = 2k\(\sqrt{2} \times \sqrt{2}\) = 8 2k \(\sqrt{4}\) = 8 2k x 2 = 8 4k = 8 k = \(\frac{8}{4}\) k = 2 < |
|
7. |
A sales boy gave a change of N68 instead of N72. Calculate his percentage error A. 4% B. 5\(\frac{5}{9}\)% C. 5\(\frac{15}{17}\)% D. 7%
Show Content
Detailed Solution% error = \(\frac{error}{\text{actual value}} \times 100\)error = N72 - N68 = 4 actual value = N72 %error = \(\frac{4}{72} \times 100\) = \(\frac{100}{18} = \frac{50}{9}\) = 5\(\frac{5}{9}\)% |
|
8. |
Four oranges sell for Nx and three mangoes sell for Ny. Olu bought 24 oranges and 12 mangoes. How much did he pay in terms of x and y? A. N94x + 6y) B. N(6x + 4y) C. N(24x + 12y) D. N(12x + 24y)
Show Content
Detailed Solution4 oranges sell for Nx, 1 orange will sell for \(\frac{Nx}{4}\)24 oranges will sell for: \(\frac{Nx}{4} \times 24\) = n6x 3 mangoes sell for Ny, 1 mango will sell for \(\frac{Ny}{3}\) 12 mangoes will sell for \(\frac{Ny}{3} \times 12\) = 4Ny total money pay N6x + N4y = N(6x + 4y) |
|
9. |
Simplify: \(\frac{x^2 - y^2}{(x + y)^2} + \frac{(x - y)^2}{(3x + 3y)}\) A. \(\frac{x - y}{3}\) B. x + y C. \(\frac{3}{x - y}\) D. x - y
Show Content
Detailed Solution\(\frac{x^2 - y^2}{(x + y)^2} + \frac{(x - y)^2}{(3x + 3y)}\)\(\frac{(x + y)(x - y)}{(x + y)(x + y)} + \frac{(x - y)(x - y)}{3(x + y)}\) = \(\frac{3}{x - y}\) |
|
10. |
Solve the inequality: \(\frac{2x - 5}{2} < (2 - x)\) A. x > 0 B. x < \(\frac{1}{4}\) C. x > 2\(\frac{1}{2}\) D. x < 2\(\frac{1}{4}\)
Show Content
Detailed Solution\(\frac{2x - 5}{2} < \frac{(2 - x)}{1}\)2x - 5 < 4 - 2x 2x + 2x < 4 + 5 4x < 9 x < \(\frac{9}{4}\) x < 2\(\frac{1}{4}\) |
Preview displays only 10 out of the 48 Questions