Paper 1 | Objectives | 48 Questions
WASSCE/WAEC MAY/JUNE
Year: 1992
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Eat well during in test days for good grades. How can you plan your exam diet with good grades in mind?
These are the best study techniques and methods that get higher grades in any school tests or exams.
Five revision strategies that are strange but effective for memorization for high exams performance
# | Question | Ans |
---|---|---|
1. |
Let U = {1, 2, 3, 4}, P = {2, 3} and Q = {2, 4}. What is (P∩Q)'? A. (1, 2, 3) B. (1, 3, 4) C. (2, 3) D. (1, 3) E. (1, 4)
Show Content
Detailed SolutionU = {1,2,3,4}; P = {2,3}; Q = {2,4}; P∩Q = {2}(P∩Q)' = {1,3,4} |
|
2. |
Simplify (3/4 + 1/3) x 41/3 + 31/4 A. 1/2 B. 13/12 C. 10/9 D. 17/12 E. 13/9
Show Content
Detailed Solution(3/4 + 1/3) x 41/3 \(\div\) 314\(\begin{pmatrix} 9 + 4 \\ 12 \end{pmatrix}\) x \(\frac{13}{3}\) \(\frac{4}{13}\) = 149 |
|
3. |
If x varies over the set of real numbers, which of the following is illustrated in the diagram above? A. -3 B. -3≤x<2 C. -3 D. -3≤x≤2 E. x≥2 |
B |
4. |
Convert 77 to a number in base two A. 1001 101 B. 111001 C. 100110 D. 10101 E. 10011
Show Content
Detailed Solution\(\begin{array}{c|c} 2 & 77 \\ \hline 2 & 38 R1 \\ 2 & 19 R0 \\ 2 & 9 R1 \\ 2 & 4 R1 \\ 2 & 2 R0 \\ 2 & 1 R0 \\ & 0 R1\end{array}\)77ten = 1001101two |
|
5. |
A bricklayer measured the length of a wall and obtained 4.10m. If the actual length of the wall is 4.25m, find his percentage error. A. 3 9/17% B. 3 27/41% C. 15% D. 35 5/17% E. 36 24/41%
Show Content
Detailed SolutionError = 4.25 - 4.10 = 0.15% error = \(\frac{0.15}{4.25} \times 100%\) = \(\frac{15}{\frac{17}{4}} = \frac{15 \times 4}{17}\) = \(3\frac{9}{17} %\) |
|
6. |
The nth term of a sequence is given by 3.2\(^{n-2}\). Write down the first three terms of the sequence. A. 2/3, 0, 6 B. 3/2, 3, 6, C. 2/3, 3, 8/3 D. 2/3, 3/4, 6 E. 2/3, 3, 1/3
Show Content
Detailed Solution\(T_n = 3. 2^{n - 2} \\T_{1} = 3. 2^{1 - 2} = 3. 2^{-1} \\ T_1 = \frac{3}{2} \) \(T_2 = 3. 2^{2 - 2} \\ T_2 = 3. 2^0 = 3\) \(T_3 = 3. 2^{3 - 2} = 3. 2^1 \\ T_3 = 6\) The first 3 terms of the sequence are \(\frac{3}{2}\), 3 and 6. |
|
7. |
Simplify: \((\frac{16}{81})^{\frac{1}{4}}\) A. 8/27 B. 1/3 C. 4/9 D. 2/3 E. -4/3
Show Content
Detailed Solution\((\frac{16}{81})^{\frac{1}{4}}\)= \(((\frac{2}{3})^{4})^{\frac{1}{4}}\) = \(\frac{2}{3}\) |
|
8. |
Evaluate \(\log_{10} 25 + \log_{10} 32 - \log_{10} 8\) A. 0.2 B. 2 C. 100 D. 409 E. 490
Show Content
Detailed Solution\(\log_{10} 25 + \log_{10} 32 - \log_{10} 8\)= \(\log_{10} (\frac{25 \times 32}{8})\) = \(\log_{10} 100 \) = 2 |
|
9. |
Factorize the expression 2y\(^2\) + xy - 3x\(^2\) A. 2y (y + x) - 3x2 B. (2y - x)(2y + x) C. (3x - 2y(x - y) D. (2y + 3x)(y - x) E. (x – y)(2y + 3x)
Show Content
Detailed Solution2y\(^2\) + xy - 3x\(^2\)2y\(^2\) + 3xy - 2xy - 3x\(^2\) y(2y + 3x) - x(2y + 3x) = (y - x)(2y + 3x) |
|
10. |
Construct a quadratic equation whose roots are \(-\frac{1}{2}\) and 2. A. 3x2-3x+2=0 B. 3x2+3x-2=0 C. 2x2+3x-2=0 D. 2x2-3x+2=0 E. 2x2-3x-2=0
Show Content
Detailed SolutionIf x = \(-\frac{1}{2}\) and 2; then\(x + \frac{1}{2} = 0\) and \(x - 2 = 0\) \(\implies (x + \frac{1}{2})(x - 2) = 0\) \(x^2 - 2x + \frac{1}{2}x - 1 = 0\) \(x^2 - \frac{3}{2}x - 1 = 0\) \(2x^2 - 3x - 2 = 0\) |
Preview displays only 10 out of the 48 Questions