Paper 1 | Objectives | 48 Questions
WASSCE/WAEC MAY/JUNE
Year: 1992
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Did you apply the MTN Ghana Bright Scholarships 2022 for Ghana Undergraduate Students?
Try studying past questions since it's a sure way to better grades in any subject at school and beyond.
The best study methods and strategies and tips for successful exam preparation for good grades
# | Question | Ans |
---|---|---|
1. |
Let U = {1, 2, 3, 4}, P = {2, 3} and Q = {2, 4}. What is (P∩Q)'? A. (1, 2, 3) B. (1, 3, 4) C. (2, 3) D. (1, 3) E. (1, 4)
Show Content
Detailed SolutionU = {1,2,3,4}; P = {2,3}; Q = {2,4}; P∩Q = {2}(P∩Q)' = {1,3,4} |
|
2. |
Simplify (3/4 + 1/3) x 41/3 + 31/4 A. 1/2 B. 13/12 C. 10/9 D. 17/12 E. 13/9
Show Content
Detailed Solution(3/4 + 1/3) x 41/3 \(\div\) 314\(\begin{pmatrix} 9 + 4 \\ 12 \end{pmatrix}\) x \(\frac{13}{3}\) \(\frac{4}{13}\) = 149 |
|
3. |
If x varies over the set of real numbers, which of the following is illustrated in the diagram above? A. -3 B. -3≤x<2 C. -3 D. -3≤x≤2 E. x≥2 |
B |
4. |
Convert 77 to a number in base two A. 1001 101 B. 111001 C. 100110 D. 10101 E. 10011
Show Content
Detailed Solution\(\begin{array}{c|c} 2 & 77 \\ \hline 2 & 38 R1 \\ 2 & 19 R0 \\ 2 & 9 R1 \\ 2 & 4 R1 \\ 2 & 2 R0 \\ 2 & 1 R0 \\ & 0 R1\end{array}\)77ten = 1001101two |
|
5. |
A bricklayer measured the length of a wall and obtained 4.10m. If the actual length of the wall is 4.25m, find his percentage error. A. 3 9/17% B. 3 27/41% C. 15% D. 35 5/17% E. 36 24/41%
Show Content
Detailed SolutionError = 4.25 - 4.10 = 0.15% error = \(\frac{0.15}{4.25} \times 100%\) = \(\frac{15}{\frac{17}{4}} = \frac{15 \times 4}{17}\) = \(3\frac{9}{17} %\) |
|
6. |
The nth term of a sequence is given by 3.2\(^{n-2}\). Write down the first three terms of the sequence. A. 2/3, 0, 6 B. 3/2, 3, 6, C. 2/3, 3, 8/3 D. 2/3, 3/4, 6 E. 2/3, 3, 1/3
Show Content
Detailed Solution\(T_n = 3. 2^{n - 2} \\T_{1} = 3. 2^{1 - 2} = 3. 2^{-1} \\ T_1 = \frac{3}{2} \) \(T_2 = 3. 2^{2 - 2} \\ T_2 = 3. 2^0 = 3\) \(T_3 = 3. 2^{3 - 2} = 3. 2^1 \\ T_3 = 6\) The first 3 terms of the sequence are \(\frac{3}{2}\), 3 and 6. |
|
7. |
Simplify: \((\frac{16}{81})^{\frac{1}{4}}\) A. 8/27 B. 1/3 C. 4/9 D. 2/3 E. -4/3
Show Content
Detailed Solution\((\frac{16}{81})^{\frac{1}{4}}\)= \(((\frac{2}{3})^{4})^{\frac{1}{4}}\) = \(\frac{2}{3}\) |
|
8. |
Evaluate \(\log_{10} 25 + \log_{10} 32 - \log_{10} 8\) A. 0.2 B. 2 C. 100 D. 409 E. 490
Show Content
Detailed Solution\(\log_{10} 25 + \log_{10} 32 - \log_{10} 8\)= \(\log_{10} (\frac{25 \times 32}{8})\) = \(\log_{10} 100 \) = 2 |
|
9. |
Factorize the expression 2y\(^2\) + xy - 3x\(^2\) A. 2y (y + x) - 3x2 B. (2y - x)(2y + x) C. (3x - 2y(x - y) D. (2y + 3x)(y - x) E. (x – y)(2y + 3x)
Show Content
Detailed Solution2y\(^2\) + xy - 3x\(^2\)2y\(^2\) + 3xy - 2xy - 3x\(^2\) y(2y + 3x) - x(2y + 3x) = (y - x)(2y + 3x) |
|
10. |
Construct a quadratic equation whose roots are \(-\frac{1}{2}\) and 2. A. 3x2-3x+2=0 B. 3x2+3x-2=0 C. 2x2+3x-2=0 D. 2x2-3x+2=0 E. 2x2-3x-2=0
Show Content
Detailed SolutionIf x = \(-\frac{1}{2}\) and 2; then\(x + \frac{1}{2} = 0\) and \(x - 2 = 0\) \(\implies (x + \frac{1}{2})(x - 2) = 0\) \(x^2 - 2x + \frac{1}{2}x - 1 = 0\) \(x^2 - \frac{3}{2}x - 1 = 0\) \(2x^2 - 3x - 2 = 0\) |
Preview displays only 10 out of the 48 Questions