Paper 1 | Objectives | 48 Questions
WASSCE/WAEC MAY/JUNE
Year: 1992
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Effective ways of coping with exam stress and test anxiety which is supported by Science
Past questions are effective for revisions for all tests including WAEC, BECE, SAT, TOEFL, GCSE, IELTS
Get free IT courses with certificates online for your skills upgrade in this era of Covid-19.
# | Question | Ans |
---|---|---|
1. |
Let U = {1, 2, 3, 4}, P = {2, 3} and Q = {2, 4}. What is (P∩Q)'? A. (1, 2, 3) B. (1, 3, 4) C. (2, 3) D. (1, 3) E. (1, 4)
Show Content
Detailed SolutionU = {1,2,3,4}; P = {2,3}; Q = {2,4}; P∩Q = {2}(P∩Q)' = {1,3,4} |
|
2. |
Simplify (3/4 + 1/3) x 41/3 + 31/4 A. 1/2 B. 13/12 C. 10/9 D. 17/12 E. 13/9
Show Content
Detailed Solution(3/4 + 1/3) x 41/3 \(\div\) 314\(\begin{pmatrix} 9 + 4 \\ 12 \end{pmatrix}\) x \(\frac{13}{3}\) \(\frac{4}{13}\) = 149 |
|
3. |
![]() If x varies over the set of real numbers, which of the following is illustrated in the diagram above? A. -3 B. -3≤x<2 C. -3 D. -3≤x≤2 E. x≥2 |
B |
4. |
Convert 77 to a number in base two A. 1001 101 B. 111001 C. 100110 D. 10101 E. 10011
Show Content
Detailed Solution\(\begin{array}{c|c} 2 & 77 \\ \hline 2 & 38 R1 \\ 2 & 19 R0 \\ 2 & 9 R1 \\ 2 & 4 R1 \\ 2 & 2 R0 \\ 2 & 1 R0 \\ & 0 R1\end{array}\)77ten = 1001101two |
|
5. |
A bricklayer measured the length of a wall and obtained 4.10m. If the actual length of the wall is 4.25m, find his percentage error. A. 3 9/17% B. 3 27/41% C. 15% D. 35 5/17% E. 36 24/41%
Show Content
Detailed SolutionError = 4.25 - 4.10 = 0.15% error = \(\frac{0.15}{4.25} \times 100%\) = \(\frac{15}{\frac{17}{4}} = \frac{15 \times 4}{17}\) = \(3\frac{9}{17} %\) |
|
6. |
The nth term of a sequence is given by 3.2\(^{n-2}\). Write down the first three terms of the sequence. A. 2/3, 0, 6 B. 3/2, 3, 6, C. 2/3, 3, 8/3 D. 2/3, 3/4, 6 E. 2/3, 3, 1/3
Show Content
Detailed Solution\(T_n = 3. 2^{n - 2} \\T_{1} = 3. 2^{1 - 2} = 3. 2^{-1} \\ T_1 = \frac{3}{2} \) \(T_2 = 3. 2^{2 - 2} \\ T_2 = 3. 2^0 = 3\) \(T_3 = 3. 2^{3 - 2} = 3. 2^1 \\ T_3 = 6\) The first 3 terms of the sequence are \(\frac{3}{2}\), 3 and 6. |
|
7. |
Simplify: \((\frac{16}{81})^{\frac{1}{4}}\) A. 8/27 B. 1/3 C. 4/9 D. 2/3 E. -4/3
Show Content
Detailed Solution\((\frac{16}{81})^{\frac{1}{4}}\)= \(((\frac{2}{3})^{4})^{\frac{1}{4}}\) = \(\frac{2}{3}\) |
|
8. |
Evaluate \(\log_{10} 25 + \log_{10} 32 - \log_{10} 8\) A. 0.2 B. 2 C. 100 D. 409 E. 490
Show Content
Detailed Solution\(\log_{10} 25 + \log_{10} 32 - \log_{10} 8\)= \(\log_{10} (\frac{25 \times 32}{8})\) = \(\log_{10} 100 \) = 2 |
|
9. |
Factorize the expression 2y\(^2\) + xy - 3x\(^2\) A. 2y (y + x) - 3x2 B. (2y - x)(2y + x) C. (3x - 2y(x - y) D. (2y + 3x)(y - x) E. (x – y)(2y + 3x)
Show Content
Detailed Solution2y\(^2\) + xy - 3x\(^2\)2y\(^2\) + 3xy - 2xy - 3x\(^2\) y(2y + 3x) - x(2y + 3x) = (y - x)(2y + 3x) |
|
10. |
Construct a quadratic equation whose roots are \(-\frac{1}{2}\) and 2. A. 3x2-3x+2=0 B. 3x2+3x-2=0 C. 2x2+3x-2=0 D. 2x2-3x+2=0 E. 2x2-3x-2=0
Show Content
Detailed SolutionIf x = \(-\frac{1}{2}\) and 2; then\(x + \frac{1}{2} = 0\) and \(x - 2 = 0\) \(\implies (x + \frac{1}{2})(x - 2) = 0\) \(x^2 - 2x + \frac{1}{2}x - 1 = 0\) \(x^2 - \frac{3}{2}x - 1 = 0\) \(2x^2 - 3x - 2 = 0\) |
Preview displays only 10 out of the 48 Questions