Year : 
2013
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

1 - 10 of 48 Questions

# Question Ans
1.

Multiply 2.7 x 10-4 by 6.3 x 106 and leave your answers in standard form

A. 1.7 x 103

B. 1.70 x 103

C. 1.701 x 103

D. 17.01 x 103

Detailed Solution

2.7 x 10-4 x 6.3 x 106

= 2.7 x 6.3 x 10-4 x 106

= 17.01 x 10-4 + 6

= 17.01 x 102

= 1.701 x 101 x 102

= 1.701 x 101 + 2

= 1.701 x 103
2.

If 9(2 - x) = 3, find x

A. 1

B. \(\frac{3}{2}\)

C. 2

D. \(\frac{5}{2}\)

Detailed Solution

9(2 - x) = 3

32(2 - x) = 3

2(2 - x) = 1

4 - 2x = 1

-2x = 1 - 4

-2x = -3

x = \(\frac{-3}{-2}\)

x = \(\frac{3}{2}\)
3.

In what number base is the addition 465 + 24 + 225 = 1050?

A. ten

B. nine

C. eight

D. seven

D

4.

Simplify \(\frac{1\frac{7}{8} \times 2\frac{2}{5}}{6\frac{3}{4} \div \frac{3}{4}}\)

A. 9

B. 4\(\frac{1}{2}\)

C. 2

D. \(\frac{1}{2}\)

Detailed Solution

\(\frac{1\frac{7}{8} \times 2\frac{2}{5}}{6\frac{3}{4} \div \frac{3}{4}}\)

from numerator \(1 \frac{7}{8} \times 2 \frac{2}{5}\)

= \(\frac{15}{8} \times \frac{12}{5}\)

= \(\frac{3 \times 3}{2 \times 1} = \frac{9}{2}\)

from denominator \(6\frac{3}{4} \div \frac{3}{4}\)

= \(\frac{27}{4} \div \frac{3}{4}\)

= \(\frac{27}{4} \times \frac{4}{3}\)

= \(\frac{9 \times 1}{1 \times 1} = \frac{9}{1}\)

\(\frac{9}{2} \div \frac{9}{1} = \frac{9}{2} \times \frac{1}{9}\)

= \(\frac{1}{2}\)
5.

If Un = n(n2 + 1), evaluate U5 - U4

A. 18

B. 56

C. 62

D. 80

Detailed Solution

Un = n(n2 + 1)

U5 = 5(2 + 1)

= 5(25 + 1)

= 5(26) = 130

U4 = 4(42 + 1) = 4(16 + 1)

= 4(17) = 68

U5 - U4 = 130 - 68

= 62
6.

If \(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\), find K

A. -2

B. -1

C. 1

D. 2

Detailed Solution

\(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\)

\(\sqrt{50} - \frac{2}{\sqrt{2}}\) = K\(\sqrt{8}\)

= \(\sqrt{2} \times 25 - \frac{2}{\sqrt{2}}\)

= K \(\sqrt{4 \times 2}\)

\(\frac{5\sqrt{2}}{1} - \frac{2}{\sqrt{2}}\) = 2K\(\sqrt{2}\)

\(\frac{5\sqrt{4} - 2}{\sqrt{2}} = 2K\sqrt{2}\)

\(\frac{10 - 2}{\sqrt{2}} = 2K \sqrt{2}\)

\(\frac{8}{\sqrt{2}} = \frac{2K\sqrt{2}}{1}\)

= 2k\(\sqrt{2} \times \sqrt{2}\) = 8

2k \(\sqrt{4}\) = 8

2k x 2 = 8

4k = 8

k = \(\frac{8}{4}\)

k = 2 <
7.

A sales boy gave a change of N68 instead of N72. Calculate his percentage error

A. 4%

B. 5\(\frac{5}{9}\)%

C. 5\(\frac{15}{17}\)%

D. 7%

Detailed Solution

% error = \(\frac{error}{\text{actual value}} \times 100\)

error = N72 - N68 = 4

actual value = N72

%error = \(\frac{4}{72} \times 100\)

= \(\frac{100}{18} = \frac{50}{9}\) = 5\(\frac{5}{9}\)%
8.

Four oranges sell for Nx and three mangoes sell for Ny. Olu bought 24 oranges and 12 mangoes. How much did he pay in terms of x and y?

A. N94x + 6y)

B. N(6x + 4y)

C. N(24x + 12y)

D. N(12x + 24y)

Detailed Solution

4 oranges sell for Nx, 1 orange will sell for \(\frac{Nx}{4}\)

24 oranges will sell for: \(\frac{Nx}{4} \times 24\) = n6x

3 mangoes sell for Ny, 1 mango will sell for \(\frac{Ny}{3}\)

12 mangoes will sell for \(\frac{Ny}{3} \times 12\) = 4Ny

total money pay N6x + N4y = N(6x + 4y)
9.

Simplify: \(\frac{x^2 - y^2}{(x + y)^2} + \frac{(x - y)^2}{(3x + 3y)}\)

A. \(\frac{x - y}{3}\)

B. x + y

C. \(\frac{3}{x - y}\)

D. x - y

Detailed Solution

\(\frac{x^2 - y^2}{(x + y)^2} + \frac{(x - y)^2}{(3x + 3y)}\)

\(\frac{(x + y)(x - y)}{(x + y)(x + y)} + \frac{(x - y)(x - y)}{3(x + y)}\)

= \(\frac{3}{x - y}\)
10.

Solve the inequality: \(\frac{2x - 5}{2} < (2 - x)\)

A. x > 0

B. x < \(\frac{1}{4}\)

C. x > 2\(\frac{1}{2}\)

D. x < 2\(\frac{1}{4}\)

Detailed Solution

\(\frac{2x - 5}{2} < \frac{(2 - x)}{1}\)

2x - 5 < 4 - 2x

2x + 2x < 4 + 5

4x < 9

x < \(\frac{9}{4}\)

x < 2\(\frac{1}{4}\)
1.

Multiply 2.7 x 10-4 by 6.3 x 106 and leave your answers in standard form

A. 1.7 x 103

B. 1.70 x 103

C. 1.701 x 103

D. 17.01 x 103

Detailed Solution

2.7 x 10-4 x 6.3 x 106

= 2.7 x 6.3 x 10-4 x 106

= 17.01 x 10-4 + 6

= 17.01 x 102

= 1.701 x 101 x 102

= 1.701 x 101 + 2

= 1.701 x 103
2.

If 9(2 - x) = 3, find x

A. 1

B. \(\frac{3}{2}\)

C. 2

D. \(\frac{5}{2}\)

Detailed Solution

9(2 - x) = 3

32(2 - x) = 3

2(2 - x) = 1

4 - 2x = 1

-2x = 1 - 4

-2x = -3

x = \(\frac{-3}{-2}\)

x = \(\frac{3}{2}\)
3.

In what number base is the addition 465 + 24 + 225 = 1050?

A. ten

B. nine

C. eight

D. seven

D

4.

Simplify \(\frac{1\frac{7}{8} \times 2\frac{2}{5}}{6\frac{3}{4} \div \frac{3}{4}}\)

A. 9

B. 4\(\frac{1}{2}\)

C. 2

D. \(\frac{1}{2}\)

Detailed Solution

\(\frac{1\frac{7}{8} \times 2\frac{2}{5}}{6\frac{3}{4} \div \frac{3}{4}}\)

from numerator \(1 \frac{7}{8} \times 2 \frac{2}{5}\)

= \(\frac{15}{8} \times \frac{12}{5}\)

= \(\frac{3 \times 3}{2 \times 1} = \frac{9}{2}\)

from denominator \(6\frac{3}{4} \div \frac{3}{4}\)

= \(\frac{27}{4} \div \frac{3}{4}\)

= \(\frac{27}{4} \times \frac{4}{3}\)

= \(\frac{9 \times 1}{1 \times 1} = \frac{9}{1}\)

\(\frac{9}{2} \div \frac{9}{1} = \frac{9}{2} \times \frac{1}{9}\)

= \(\frac{1}{2}\)
5.

If Un = n(n2 + 1), evaluate U5 - U4

A. 18

B. 56

C. 62

D. 80

Detailed Solution

Un = n(n2 + 1)

U5 = 5(2 + 1)

= 5(25 + 1)

= 5(26) = 130

U4 = 4(42 + 1) = 4(16 + 1)

= 4(17) = 68

U5 - U4 = 130 - 68

= 62
6.

If \(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\), find K

A. -2

B. -1

C. 1

D. 2

Detailed Solution

\(\sqrt{50} - K\sqrt{8} = \frac{2}{\sqrt{2}}\)

\(\sqrt{50} - \frac{2}{\sqrt{2}}\) = K\(\sqrt{8}\)

= \(\sqrt{2} \times 25 - \frac{2}{\sqrt{2}}\)

= K \(\sqrt{4 \times 2}\)

\(\frac{5\sqrt{2}}{1} - \frac{2}{\sqrt{2}}\) = 2K\(\sqrt{2}\)

\(\frac{5\sqrt{4} - 2}{\sqrt{2}} = 2K\sqrt{2}\)

\(\frac{10 - 2}{\sqrt{2}} = 2K \sqrt{2}\)

\(\frac{8}{\sqrt{2}} = \frac{2K\sqrt{2}}{1}\)

= 2k\(\sqrt{2} \times \sqrt{2}\) = 8

2k \(\sqrt{4}\) = 8

2k x 2 = 8

4k = 8

k = \(\frac{8}{4}\)

k = 2 <
7.

A sales boy gave a change of N68 instead of N72. Calculate his percentage error

A. 4%

B. 5\(\frac{5}{9}\)%

C. 5\(\frac{15}{17}\)%

D. 7%

Detailed Solution

% error = \(\frac{error}{\text{actual value}} \times 100\)

error = N72 - N68 = 4

actual value = N72

%error = \(\frac{4}{72} \times 100\)

= \(\frac{100}{18} = \frac{50}{9}\) = 5\(\frac{5}{9}\)%
8.

Four oranges sell for Nx and three mangoes sell for Ny. Olu bought 24 oranges and 12 mangoes. How much did he pay in terms of x and y?

A. N94x + 6y)

B. N(6x + 4y)

C. N(24x + 12y)

D. N(12x + 24y)

Detailed Solution

4 oranges sell for Nx, 1 orange will sell for \(\frac{Nx}{4}\)

24 oranges will sell for: \(\frac{Nx}{4} \times 24\) = n6x

3 mangoes sell for Ny, 1 mango will sell for \(\frac{Ny}{3}\)

12 mangoes will sell for \(\frac{Ny}{3} \times 12\) = 4Ny

total money pay N6x + N4y = N(6x + 4y)
9.

Simplify: \(\frac{x^2 - y^2}{(x + y)^2} + \frac{(x - y)^2}{(3x + 3y)}\)

A. \(\frac{x - y}{3}\)

B. x + y

C. \(\frac{3}{x - y}\)

D. x - y

Detailed Solution

\(\frac{x^2 - y^2}{(x + y)^2} + \frac{(x - y)^2}{(3x + 3y)}\)

\(\frac{(x + y)(x - y)}{(x + y)(x + y)} + \frac{(x - y)(x - y)}{3(x + y)}\)

= \(\frac{3}{x - y}\)
10.

Solve the inequality: \(\frac{2x - 5}{2} < (2 - x)\)

A. x > 0

B. x < \(\frac{1}{4}\)

C. x > 2\(\frac{1}{2}\)

D. x < 2\(\frac{1}{4}\)

Detailed Solution

\(\frac{2x - 5}{2} < \frac{(2 - x)}{1}\)

2x - 5 < 4 - 2x

2x + 2x < 4 + 5

4x < 9

x < \(\frac{9}{4}\)

x < 2\(\frac{1}{4}\)