Paper 1 | Objectives | 50 Questions
WASSCE/WAEC MAY/JUNE
Year: 1991
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Get full scholarship paid tuition from 5 countries with free education in 2022 for international students
Five revision strategies that are strange but effective for memorization for high exams performance
How can past papers boost your revision? See how practicing past test is a good way to get higher grades.
# | Question | Ans |
---|---|---|
1. |
Express 0.0462 in standard form A. 0.462 x 10-1 B. 0.462 x 10-2 C. 4.62 x 10-1 D. 4.62 x 10-2 E. 4.62 x 103
Show Content
Detailed Solution4.62 x 10-2 |
|
2. |
The population of a village is 5846. Express this number to three significant figures A. 5850 B. 5846 C. 5840 D. 585 E. 584
Show Content
Detailed Solution5846 \(\approxeq\) 5850 (to 3 s.f.) |
|
3. |
Simplify: log6 + log2 - log12 A. -4 B. -1 D. 1 E. 4
Show Content
Detailed Solutionlog 6 + log 2 - log 12= \(\log (\frac{6 \times 2}{12})\) = \(\log 1\) = 0 |
|
4. |
Find the number whose logarithm to base 10 is 2.6025 A. 400.4 B. 0.4004 C. 0.04004 D. 0.004004 E. 0.0004004
Show Content
Detailed SolutionFor the log to be 2.6025, there must be three digits before the decimal point. |
|
5. |
Simplify: \((\frac{1}{4})^{-1\frac{1}{2}}\) A. 1/8 B. 1/4 C. 2 D. 4 E. 8
Show Content
Detailed Solution\((\frac{1}{4})^{-1\frac{1}{2}}\)= \((\frac{1}{4})^{-\frac{3}{2}}\) = \((\sqrt{\frac{1}{4}})^{-3}\) = \((\frac{1}{2})^{-3}\) = \(2^3\) = 8 |
|
6. |
For what value of y is the expression \(\frac{y + 2}{y^{2} - 3y - 10}\) undefined? A. y = 0 B. y = 2 C. y = 3 D. y = 5 E. y = 10
Show Content
Detailed Solution\(\frac{y + 2}{y^2 - 3y - 10}\)\(y^2 - 3y - 10 = 0 \implies y^2 - 5y + 2y - 10 = 0\) \(y(y - 5) + 2(y - 5) = 0\) \((y - 5)(y + 2) = 0\) \(\frac{y + 2}{(y - 5)(y + 2)} = \frac{1}{y - 5}\) \(\therefore\) At y = 5, the expression \(\frac{y + 2}{y^2 - 3y - 10}\) is undefined. |
|
7. |
Factorize 3a\(^2\) - 11a + 6 A. (3a - 2)(a - 3) B. (2a -2)(a - 3) C. (3a - 2)(a + 3) D. (3a + 2)(a - 3) E. (2a-3)(a + 2)
Show Content
Detailed Solution3a\(^2\) - 11a + 63a\(^2\) - 9a - 2a + 6 3a(a - 3) - 2(a - 3) = (3a - 2)(a - 3) |
|
8. |
Solve the equation: 3a + 10 = a\(^2\) A. a = 5 or a = 2 B. a = -5 or a = 2 C. a = 10 or a = 0 D. a = 5 or a = 0 E. a = 5 or a = -2
Show Content
Detailed Solution3a + 10 = a\(^2\)a\(^2\) - 3a - 10 = 0 a\(^2\) - 5a + 2a - 10 = 0 a(a - 5) + 2(a - 5) = 0 (a - 5)(a + 2) = 0 a = 5 or a = -2. |
|
9. |
Simplify \((\frac{3}{x} + \frac{15}{2y}) \div \frac{6}{xy}\) A. \(\frac{2y - 5x}{4}\) B. \(\frac{9(2x - 5x)}{x^2y^2}\) C. \(\frac{5x - 2y}{2}\) D. \(\frac{c^2y^2}{18y - 45x}\) E. \(\frac{4}{2y - 5x}\)
Show Content
Detailed Solution\((\frac{3}{x} - \frac{15}{2y}) \div \frac{6}{xy}\)= \((\frac{6y - 15x}{2xy}) \div \frac{6}{xy}\) = \(\frac{6y - 15x}{2xy} \times \frac{xy}{6}\) = \(\frac{3(2y - 5x)}{2xy} \times \frac{xy}{6}\) = \(\frac{2y - 5x}{4}\) |
|
10. |
Simplify: 1/4(2n - 2n+2) A. 2n2 - 2n B. 2n-2(1-2n) C. 2n + 22n + 2 D. 22n
Show Content
Detailed Solution1/4(2n - 2n+2) = 2-2(2n - 2n x 22) = 2n x -2(1 - 22)= 22n-2(20 - 22) = 22n-2 - 2n |
Preview displays only 10 out of the 50 Questions