Paper 1  Objectives  50 Questions
WASSCE/WAEC MAY/JUNE
Year: 1991
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Good jobs available to people without a college degree, how to get good job without a college degree?
Managing Stress and anxiety in exams, 10 tips and strategies for Coping exam stress and test anxiety.
Try studying past questions since it's a sure way to better grades in any subject at school and beyond.
#  Question  Ans 

1. 
Express 0.0462 in standard form A. 0.462 x 10^{1} B. 0.462 x 10^{2} C. 4.62 x 10^{1} D. 4.62 x 10^{2} E. 4.62 x 10^{3}
Show Content
Detailed Solution4.62 x 10^{2} 

2. 
The population of a village is 5846. Express this number to three significant figures A. 5850 B. 5846 C. 5840 D. 585 E. 584
Show Content
Detailed Solution5846 \(\approxeq\) 5850 (to 3 s.f.) 

3. 
Simplify: log6 + log2  log12 A. 4 B. 1 D. 1 E. 4
Show Content
Detailed Solutionlog 6 + log 2  log 12= \(\log (\frac{6 \times 2}{12})\) = \(\log 1\) = 0 

4. 
Find the number whose logarithm to base 10 is 2.6025 A. 400.4 B. 0.4004 C. 0.04004 D. 0.004004 E. 0.0004004
Show Content
Detailed SolutionFor the log to be 2.6025, there must be three digits before the decimal point. 

5. 
Simplify: \((\frac{1}{4})^{1\frac{1}{2}}\) A. 1/8 B. 1/4 C. 2 D. 4 E. 8
Show Content
Detailed Solution\((\frac{1}{4})^{1\frac{1}{2}}\)= \((\frac{1}{4})^{\frac{3}{2}}\) = \((\sqrt{\frac{1}{4}})^{3}\) = \((\frac{1}{2})^{3}\) = \(2^3\) = 8 

6. 
For what value of y is the expression \(\frac{y + 2}{y^{2}  3y  10}\) undefined? A. y = 0 B. y = 2 C. y = 3 D. y = 5 E. y = 10
Show Content
Detailed Solution\(\frac{y + 2}{y^2  3y  10}\)\(y^2  3y  10 = 0 \implies y^2  5y + 2y  10 = 0\) \(y(y  5) + 2(y  5) = 0\) \((y  5)(y + 2) = 0\) \(\frac{y + 2}{(y  5)(y + 2)} = \frac{1}{y  5}\) \(\therefore\) At y = 5, the expression \(\frac{y + 2}{y^2  3y  10}\) is undefined. 

7. 
Factorize 3a\(^2\)  11a + 6 A. (3a  2)(a  3) B. (2a 2)(a  3) C. (3a  2)(a + 3) D. (3a + 2)(a  3) E. (2a3)(a + 2)
Show Content
Detailed Solution3a\(^2\)  11a + 63a\(^2\)  9a  2a + 6 3a(a  3)  2(a  3) = (3a  2)(a  3) 

8. 
Solve the equation: 3a + 10 = a\(^2\) A. a = 5 or a = 2 B. a = 5 or a = 2 C. a = 10 or a = 0 D. a = 5 or a = 0 E. a = 5 or a = 2
Show Content
Detailed Solution3a + 10 = a\(^2\)a\(^2\)  3a  10 = 0 a\(^2\)  5a + 2a  10 = 0 a(a  5) + 2(a  5) = 0 (a  5)(a + 2) = 0 a = 5 or a = 2. 

9. 
Simplify \((\frac{3}{x} + \frac{15}{2y}) \div \frac{6}{xy}\) A. \(\frac{2y  5x}{4}\) B. \(\frac{9(2x  5x)}{x^2y^2}\) C. \(\frac{5x  2y}{2}\) D. \(\frac{c^2y^2}{18y  45x}\) E. \(\frac{4}{2y  5x}\)
Show Content
Detailed Solution\((\frac{3}{x}  \frac{15}{2y}) \div \frac{6}{xy}\)= \((\frac{6y  15x}{2xy}) \div \frac{6}{xy}\) = \(\frac{6y  15x}{2xy} \times \frac{xy}{6}\) = \(\frac{3(2y  5x)}{2xy} \times \frac{xy}{6}\) = \(\frac{2y  5x}{4}\) 

10. 
Simplify: ^{1}/_{4}(2^{n}  2^{n+2}) A. 2^{n2}  2^{n} B. 2^{n2}(12^{n}) C. 2^{n} + 2^{2n} + 2 D. 2^{2n}
Show Content
Detailed Solution^{1}/_{4}(2^{n}  2^{n+2}) = 2^{2}(2^{n}  2^{n} x 2^{2}) = 2^{n} x ^{2}(1  2^{2})= 2^{2n2}(2^{0}  2^{2}) = 2^{2n2}  2^{n} 
Preview displays only 10 out of the 50 Questions