Paper 1 | Objectives | 50 Questions
WASSCE/WAEC MAY/JUNE
Year: 1994
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Past questions are effective for revisions for all tests including WAEC, BECE, SAT, TOEFL, GCSE, IELTS
The goal of mocks tests is to create a bench-marking tool to help students assess their performances.
Good jobs available to people without a college degree, how to get good job without a college degree?
# | Question | Ans |
---|---|---|
1. |
If the 2nd and 5th terms of a G.P are 6 and 48 respectively, find the sum of the first for term A. -45 B. -15 C. 15 D. 33 E. 45
Show Content
Detailed SolutionT\(_{2}\) = ar = 6T\(_{5}\) = ar\(^{4}\) = 48 \(\frac{T_5}{T_2}\) = \(\frac{ar^{4}}{ar}\) = \(\frac{48}{6}\) = r\(^{3}\) = 8 ⇒ r = 2 S\(_{n}\) = \(\frac{a((r^n) - 1)}{r - 1}\) S\(_{4}\) = \(\frac{a((r^4) - 1)}{r - 1}\) S\(_{4}\) = \(\frac{3((2^4) - 1)}{2 - 1}\) = 3(16 -1) = 45 |
|
2. |
If sin\( \theta \) = K find tan\(\theta\), 0° \(\leq\) \(\theta\) \(\leq\) 90°. A. 1-K B. \( \frac{k}{k - 1} \) C. \( \frac{k}{\sqrt{1 - k^2}} \) D. \( \frac{k}{1 - k} \) E. \( \frac{k}{\sqrt{ k^2 - 1}} \)
Show Content
Detailed Solution\(\sin \theta = \frac{k}{1}\)\(\implies 1^2 = k^2 + adj^2\) \(adj = \sqrt{1 - k^2}\) \(\therefore \tan \theta = \frac{k}{\sqrt{1 - k^2}}\) |
|
3. |
Simplify: \(2\frac{1}{3} \div 2\frac{2}{3} \times 1\frac{1}{7}\) A. 0 B. 1 C. 2 D. 3 E. 4
Show Content
Detailed Solution\(2\frac{1}{3} \div 2\frac{2}{3} \times 1\frac{1}{7}\)= \(\frac{7}{3} \div \frac{8}{3} \times \frac{8}{7}\) = \(\frac{7}{3} \times \frac{3}{8} \times \frac{8}{7}\) = 1 |
|
4. |
Which of the following is equal to \(\frac{72}{125}\) A. \( \frac{2^3 \times 3^2}{5^3} \) B. \( \frac{2^4 \times 3}{5^3} \) C. \( \frac{2^3 \times 3}{5^3} \) D. \( \frac{2^4 \times 3}{5^5} \) E. \( \frac{2^2 \times 3^2 \times 4^2}{5^2} \)
Show Content
Detailed Solution\(\frac{72}{125} = \frac{8 \times 9}{5 \times 5 \times 5}\)= \(\frac{2^3 \times 3^2}{5^3}\) |
|
5. |
Express in \( \frac{8.75}{0.025} \)standard form A. 3.5 x 10-3 B. 3.5 x 10-2 C. 3.5 x 101 D. 3.5 x 102 E. 3.5 x 103
Show Content
Detailed Solution\(\frac{8.75}{0.025}\)= \(\frac{8750}{25}\) = \(350\) = \(3.5 \times 10^2\) |
|
6. |
Evaluate \( \frac{27^{\frac{1}{3}}}{16^{-\frac{1}{4}}} \) A. 6 B. 5 C. 4 D. 3 E. 2
Show Content
Detailed Solution\(\frac{27^{\frac{1}{3}}}{16^{-\frac{1}{4}}} \)= \(\frac{(3^3)^{\frac{1}{3}}}{(2^4)^{-\frac{1}{4}}}\) = \(\frac{3}{2^{-1}}\) = 6 |
|
7. |
Simplify: 16\(^{\frac{5}{4}}\) x 2\(^{-3}\) x 3\(^0\) A. 0 B. 2 C. 4 D. 10 E. 20
Show Content
Detailed Solution16\(^{\frac{5}{4}}\) x 2\(^{-3}\) x 3\(^0\)= \((2^4)^{\frac{5}{4}} \times 2^{-3} \times 1\) = \(2^5 \times 2^{-3} \times 1\) = \(2^2\) = 4. |
|
8. |
Simplify; 2log\(_{3}\) 6 + log\(_{3}\) 12 - log\(_{3}\) 16 A. 2 B. 3 C. 2 - 2log32 D. 3 - log32 E. 4 - log32
Show Content
Detailed Solution2log\(_{3}\) 6 + log\(_{3}\) 12 - log\(_{3}\) 16= \(\log_3 6^2 + \log_3 12 - \log_3 16\) = \(\log_{3} (\frac{36 \times 12}{16})\) = \(\log_{3} (27)\) = \(\log_{3} 3^3\) = \(3 \log_{3} 3\) = 3 |
|
9. |
What is the number whose logarithm to base 10 is \(\bar{3}.4771\)? A. 3.0 B. 0.3 C. 0.03 D. 0.003 E. 0.0003 |
D |
10. |
A house bought for N100,000 was later auctioned for N80,000. Find the loss percent. A. 20% B. 30% C. 40% D. 50% E. 60%
Show Content
Detailed SolutionLoss = N(100,000 - 80,000)= N20,000. Loss percentage = \(\frac{20,000}{100,000} \times 100%\) = 20% |
Preview displays only 10 out of the 50 Questions