Paper 1  Objectives  47 Questions
WASSCE/WAEC MAY/JUNE
Year: 1990
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Past questions are effective for revisions for all tests including WAEC, BECE, SAT, TOEFL, GCSE, IELTS
Five revision strategies that are strange but effective for memorization for high exams performance
The best study methods and strategies and tips for successful exam preparation for good grades
#  Question  Ans 

1. 
Simplify 125\(^{\frac{1}{3}}\) x 49\(^{\frac{1}{2}}\) x 10\(^0\) A. 350 B. 35 C. 1/35 D. 1/350
Show Content
Detailed Solution125\(^{\frac{1}{3}}\) x 49\(^{\frac{1}{2}}\) x 10\(^0\)= 5\(^{1}\) x 7\(^{1}\) x 1 = \(\frac{1}{35}\) 

2. 
If 3\(^{2x}\) = 27, what is x? A. 1 B. 1.5 C. 4.5 D. 18 E. 40.5
Show Content
Detailed Solution3\(^{2x}\) = 273\(^{2x}\) = 3\(^3\) 2x = 3 x = 1.5 

3. 
Express 0.00562 in standard form A. 5.62 x 10^{3} B. 5.62 x 10^{2} C. 562 x 10^{2} D. 5.62 x 10^{2} E. 5.62 x 10^{3}
Show Content
Detailed Solution0.00562 = 5.62 x 10\(^{3}\) 

4. 
Given that 1/3log_{10} P = 1, find the value of P A. 1/10 B. 3 C. 10 D. 100 E. 1000
Show Content
Detailed Solution^{1}/_{3}log_{10}P = 1log_{10}P^{1/3} = log_{10}10 P^{1/3} = 10 P = 1000 

5. 
Simplify \(\frac{\log \sqrt{8}}{\log 8}\) A. 1/3 B. 1/2 C. ^{1}/_{3}log√2 D. ^{1}/_{3}log√8 E. ^{1}/_{2}log√2
Show Content
Detailed Solution\(\frac{\log \sqrt{8}}{\log 8}\)= \(\frac{\log 8^{\frac{1}{2}}}{log 8}\) = \(\frac{\frac{1}{2} \log 8}{\log 8}\) = \(\frac{1}{2}\) 

6. 
Evaluate using the logarithm table, log(0.65)^{2} A. 1.6258 B. 0.6272 C. 0.6258 D. 3.6258 E. 1.6272
Show Content
Detailed Solutionlog(0.65)^{2} = 2log(0.65) but log0.65 = 1.8129∴2 x 1.8129 = 3.6258 

7. 
If log x = \(\bar{2}.3675\) and log y = 0.9750, what is the value of x + y? Correct to three significant figures A. 1.18 B. 1.31 C. 9.03 D. 9.44 E. 9.46
Show Content
Detailed Solutionlog x = \(\bar{2}.3675\) ; log y = 0.9750\(x = 10^{\bar{2}.3675} = 0.02331 \) \(y = 10^{0.9750} = 9.441 \) \(x + y = 9.4641 \approxeq 9.46\) 

8. 
While doing his physics practical, Idowu recorded a reading as 1.12cm instead of 1.21cm. Calculate his percentage error A. 1.17% B. 6.38% C. 7.44% D. 8.035% E. 9.00%
Show Content
Detailed Solution%error = \(\frac{1.21  1.12}{1.21} \times 100%\)= \(\frac{9}{121} \times 100%\) = 7.44% 

9. 
Find the 4th term of an A.P, whose first term is 2 and the common difference is 0.5 A. 0.5 B. 2.5 C. 3.5 D. 4 E. 4.5
Show Content
Detailed Solution\(U_{n} = a + (n  1)d\)\(U_{4} = 2 + (4  1) \times 0.5\) = \(2 + 1.5\) = 3.5 

10. 
From the graph determine the roots of the equation y = 2x^{2} + x  6 A. 3, 4 B. 2, 6 C. 2, 1.5 D. 1, 1 E. 2, 1.5 
C 
Preview displays only 10 out of the 47 Questions