Paper 1  Objectives  47 Questions
WASSCE/WAEC MAY/JUNE
Year: 1990
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Get full scholarship paid tuition from 5 countries with free education in 2022 for international students
Try studying past questions since it's a sure way to better grades in any subject at school and beyond.
DAAD scholarship to assist SubSaharan African students fleeing war in Ukraine to complete their studies
#  Question  Ans 

1. 
Simplify 125\(^{\frac{1}{3}}\) x 49\(^{\frac{1}{2}}\) x 10\(^0\) A. 350 B. 35 C. 1/35 D. 1/350
Show Content
Detailed Solution125\(^{\frac{1}{3}}\) x 49\(^{\frac{1}{2}}\) x 10\(^0\)= 5\(^{1}\) x 7\(^{1}\) x 1 = \(\frac{1}{35}\) 

2. 
If 3\(^{2x}\) = 27, what is x? A. 1 B. 1.5 C. 4.5 D. 18 E. 40.5
Show Content
Detailed Solution3\(^{2x}\) = 273\(^{2x}\) = 3\(^3\) 2x = 3 x = 1.5 

3. 
Express 0.00562 in standard form A. 5.62 x 10^{3} B. 5.62 x 10^{2} C. 562 x 10^{2} D. 5.62 x 10^{2} E. 5.62 x 10^{3}
Show Content
Detailed Solution0.00562 = 5.62 x 10\(^{3}\) 

4. 
Given that 1/3log_{10} P = 1, find the value of P A. 1/10 B. 3 C. 10 D. 100 E. 1000
Show Content
Detailed Solution^{1}/_{3}log_{10}P = 1log_{10}P^{1/3} = log_{10}10 P^{1/3} = 10 P = 1000 

5. 
Simplify \(\frac{\log \sqrt{8}}{\log 8}\) A. 1/3 B. 1/2 C. ^{1}/_{3}log√2 D. ^{1}/_{3}log√8 E. ^{1}/_{2}log√2
Show Content
Detailed Solution\(\frac{\log \sqrt{8}}{\log 8}\)= \(\frac{\log 8^{\frac{1}{2}}}{log 8}\) = \(\frac{\frac{1}{2} \log 8}{\log 8}\) = \(\frac{1}{2}\) 

6. 
Evaluate using the logarithm table, log(0.65)^{2} A. 1.6258 B. 0.6272 C. 0.6258 D. 3.6258 E. 1.6272
Show Content
Detailed Solutionlog(0.65)^{2} = 2log(0.65) but log0.65 = 1.8129∴2 x 1.8129 = 3.6258 

7. 
If log x = \(\bar{2}.3675\) and log y = 0.9750, what is the value of x + y? Correct to three significant figures A. 1.18 B. 1.31 C. 9.03 D. 9.44 E. 9.46
Show Content
Detailed Solutionlog x = \(\bar{2}.3675\) ; log y = 0.9750\(x = 10^{\bar{2}.3675} = 0.02331 \) \(y = 10^{0.9750} = 9.441 \) \(x + y = 9.4641 \approxeq 9.46\) 

8. 
While doing his physics practical, Idowu recorded a reading as 1.12cm instead of 1.21cm. Calculate his percentage error A. 1.17% B. 6.38% C. 7.44% D. 8.035% E. 9.00%
Show Content
Detailed Solution%error = \(\frac{1.21  1.12}{1.21} \times 100%\)= \(\frac{9}{121} \times 100%\) = 7.44% 

9. 
Find the 4th term of an A.P, whose first term is 2 and the common difference is 0.5 A. 0.5 B. 2.5 C. 3.5 D. 4 E. 4.5
Show Content
Detailed Solution\(U_{n} = a + (n  1)d\)\(U_{4} = 2 + (4  1) \times 0.5\) = \(2 + 1.5\) = 3.5 

10. 
From the graph determine the roots of the equation y = 2x^{2} + x  6 A. 3, 4 B. 2, 6 C. 2, 1.5 D. 1, 1 E. 2, 1.5 
C 
Preview displays only 10 out of the 47 Questions