Paper 1 | Objectives | 50 Questions
WASSCE/WAEC MAY/JUNE
Year: 2020
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
8 Tips To Be More Productive in Test Revision for good grades and higher performance in exams
Middle East and North Africa MENA Scholarship Program (MSP) initiative provides scholarships
Past questions are effective for revisions for all tests including WAEC, BECE, SAT, TOEFL, GCSE, IELTS
# | Question | Ans |
---|---|---|
1. |
Evaluate and correct to two decimal places, 75.0785 - 34.624 + 8.83 A. 30.60 B. 50.29 C. 50.28 D. 30.62
Show Content
Detailed Solution75.0785- 34.624 -------------- 40.4545 + 9.83 -------------- 50.28 to 2d.p |
|
2. |
If X = {x : x < 7} and Y = {y:y is a factor of 24} are subsets of \(\mu\) = {1, 2, 3...10} find X \(\cap\) Y. A. {2, 3, 4, 6} B. {1, 2, 3, 4, 6} C. {2, 3, 4, 6, 8} D. {1, 2, 3, 4, 6, 8}
Show Content
Detailed Solution\(\mu\) = {1, 2, 3, 4..., 10}X = {1, 2, 3, 4, 5, 6} Y = {1, 2, 3, 4, 6, 8} Therefore; X \(\cap\) Y = {1, 2, 3, 4, 6} |
|
3. |
Simplify; [(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{2}}\)]\(^{\frac{1}{3}}\) A. \(\frac{3}{4}\) B. \(\frac{9}{16}\) C. \(\frac{3}{8}\) D. \(\frac{1}{4}\)
Show Content
Detailed Solution[(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{2}}\)]\(^{\frac{1}{3}}\)= [(\(\frac{9}{16}\))]\(^{\frac{3}{2}}\) x [(\(\frac{1}{16}\))\(^{\frac{3}{4}}\)]\(^{\frac{1}{3}}\) = [(\(\sqrt{\frac{9}{10}}\))\(^3\) x (4\(\sqrt{\frac{1}{16}})^3\)]\(^{\frac{1}{3}}\) = [(\(\frac{3}{4})^3 \times (\frac{1}{2})^3\)]\(^\frac{1}{3}\) (\(\frac{27}{64} \times \frac{1}{8}\))\(^\frac{1}{3}\) = \({3}\sqrt{\frac{27}{64} \times \frac{1}{8}}\) = \(\frac{3}{4} \times \frac{1}{2}\) = \(\frac{3}{8}\) |
|
4. |
Express 1 + 2 log10\(^3\) in the form log10\(^9\) A. log10\(^{90}\) B. log10\(^{19}\) C. log10\(^{9}\) D. log10\(^{6}\)
Show Content
Detailed Solution1 + 2log\(_{10}^3\)= log\(_{10}^{10} + log_{10}^{3^2}\) = log\(_{10}^{10} + log_{10}^{9}\) = log\(_{10}^{10 \times 90}\) = log\(_{10}^{90}\) |
|
5. |
If 101\(_{\text{two}}\) + 12y = 3.3\(_{\text{five}}\). Find the value of y A. 8 B. 7 C. 6 D. 5
Show Content
Detailed Solution012 + 01 = 01101\(_2\) + 12\(_y\) = 2.3\(_5\) 1 x 2\(^o\) + 0 x 2\(^o\) + 1 x2\(^2\) + 1 x y\(^o\) + 2 x y\(^1\) = 3 x 5\(^o\) + 3 x 5\(^1\) 1 + 4 + 1 + 2y = 3 + 15 6 + 2y = 18 2y = 18 - 6 \(\frac{2y}{2} = \frac{12}{2}\) y = 6 |
|
6. |
An amount of N550,000.00 was realized when a principal, x was saved at 2% simple interest for 5 years. Find the value of x A. N470,000.00 B. N480,000.00 C. N490,000.00 D. N500,000.00
Show Content
Detailed SolutionS.I = \(\frac{x \times 2 \times 5}{100}\) = 0.1xA = P + S.I 550,000 = x + 0.1x \(\frac{550,000}{1.1} = \frac{1.1x}{1.1}\) x = N500,000 |
|
7. |
Given that \(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) = x + y\(\sqrt{15}\), find the value of (x + y) A. 1\(\frac{3}{5}\) B. 1\(\frac{2}{5}\) C. 1\(\frac{1}{5}\) D. \(\frac{1}{5}\)
Show Content
Detailed Solution\(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) = x + y\(\sqrt{15}\)cross multiply to have: \(\sqrt{3}\) + \(\sqrt{5}\) = x\(\sqrt{5}\) + 5y\(\sqrt{3}\) Collect like roots : x\(\sqrt{5}\) = \(\sqrt{5}\) → x = 1 5y\(\sqrt{3}\) = \(\sqrt{3}\) → y = \(\frac{1}{5}\) ∴ ( x + y ) = 1 + \(\frac{1}{5}\) = 1\(\frac{1}{5}\) |
|
8. |
If x = 3 and y = -1, evaluate 2(x\(^2\) - y\(^2\)) A. 24 B. 22 C. 20 D. 16
Show Content
Detailed Solution2(\(x^2 - y^2\))= 2(x + y)(x - y) = 2(3 + (-1))(3 - (-1)) = 2(2)(4) = 16 |
|
9. |
Solve 3x - 2y = 10 and x + 3y = 7 simultaneously A. x = -4 and y = 1 B. x = -1 and y = -4 C. x = 1 and y = 4 D. x = 4 and y = 1
Show Content
Detailed Solution3x - 2y = 10 - - x 3x + 3y = 7 ---x 2 ------------------------ 9x - 6y = 30 2x + 6y = 14 ------------------------- \(\frac{11x}{11} \frac{44}{11}\) x = 4 From x + 3y = 7 3y = 7 - 4 \(\frac{3y}{3}\) = \(\frac{3}{3}\) y = 1 |
|
10. |
The implication x \(\to\) y is equivalent to A. ~ y \(\to\) ~ x B. y \(\to\) ~ x C. ~ x \(\to\) ~ y D. y \(\to\) x |
A |
Preview displays only 10 out of the 50 Questions