Paper 1 | Objectives | 50 Questions
WASSCE/WAEC MAY/JUNE
Year: 2020
Level: SHS
Time:
Type: Question Paper
Source: Nigeria
Answers provided
No description provided
This paper is yet to be rated
Past questions are effective for revisions for all tests including WAEC, BECE, SAT, TOEFL, GCSE, IELTS
Apply tips for stress-free eating before and during exams and what to avoid for good grades.
Eat well during in test days for good grades. How can you plan your exam diet with good grades in mind?
# | Question | Ans |
---|---|---|
1. |
Evaluate and correct to two decimal places, 75.0785 - 34.624 + 8.83 A. 30.60 B. 50.29 C. 50.28 D. 30.62
Show Content
Detailed Solution75.0785- 34.624 -------------- 40.4545 + 9.83 -------------- 50.28 to 2d.p |
|
2. |
If X = {x : x < 7} and Y = {y:y is a factor of 24} are subsets of \(\mu\) = {1, 2, 3...10} find X \(\cap\) Y. A. {2, 3, 4, 6} B. {1, 2, 3, 4, 6} C. {2, 3, 4, 6, 8} D. {1, 2, 3, 4, 6, 8}
Show Content
Detailed Solution\(\mu\) = {1, 2, 3, 4..., 10}X = {1, 2, 3, 4, 5, 6} Y = {1, 2, 3, 4, 6, 8} Therefore; X \(\cap\) Y = {1, 2, 3, 4, 6} |
|
3. |
Simplify; [(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{2}}\)]\(^{\frac{1}{3}}\) A. \(\frac{3}{4}\) B. \(\frac{9}{16}\) C. \(\frac{3}{8}\) D. \(\frac{1}{4}\)
Show Content
Detailed Solution[(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{2}}\)]\(^{\frac{1}{3}}\)= [(\(\frac{9}{16}\))]\(^{\frac{3}{2}}\) x [(\(\frac{1}{16}\))\(^{\frac{3}{4}}\)]\(^{\frac{1}{3}}\) = [(\(\sqrt{\frac{9}{10}}\))\(^3\) x (4\(\sqrt{\frac{1}{16}})^3\)]\(^{\frac{1}{3}}\) = [(\(\frac{3}{4})^3 \times (\frac{1}{2})^3\)]\(^\frac{1}{3}\) (\(\frac{27}{64} \times \frac{1}{8}\))\(^\frac{1}{3}\) = \({3}\sqrt{\frac{27}{64} \times \frac{1}{8}}\) = \(\frac{3}{4} \times \frac{1}{2}\) = \(\frac{3}{8}\) |
|
4. |
Express 1 + 2 log10\(^3\) in the form log10\(^9\) A. log10\(^{90}\) B. log10\(^{19}\) C. log10\(^{9}\) D. log10\(^{6}\)
Show Content
Detailed Solution1 + 2log\(_{10}^3\)= log\(_{10}^{10} + log_{10}^{3^2}\) = log\(_{10}^{10} + log_{10}^{9}\) = log\(_{10}^{10 \times 90}\) = log\(_{10}^{90}\) |
|
5. |
If 101\(_{\text{two}}\) + 12y = 3.3\(_{\text{five}}\). Find the value of y A. 8 B. 7 C. 6 D. 5
Show Content
Detailed Solution012 + 01 = 01101\(_2\) + 12\(_y\) = 2.3\(_5\) 1 x 2\(^o\) + 0 x 2\(^o\) + 1 x2\(^2\) + 1 x y\(^o\) + 2 x y\(^1\) = 3 x 5\(^o\) + 3 x 5\(^1\) 1 + 4 + 1 + 2y = 3 + 15 6 + 2y = 18 2y = 18 - 6 \(\frac{2y}{2} = \frac{12}{2}\) y = 6 |
|
6. |
An amount of N550,000.00 was realized when a principal, x was saved at 2% simple interest for 5 years. Find the value of x A. N470,000.00 B. N480,000.00 C. N490,000.00 D. N500,000.00
Show Content
Detailed SolutionS.I = \(\frac{x \times 2 \times 5}{100}\) = 0.1xA = P + S.I 550,000 = x + 0.1x \(\frac{550,000}{1.1} = \frac{1.1x}{1.1}\) x = N500,000 |
|
7. |
Given that \(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) = x + y\(\sqrt{15}\), find the value of (x + y) A. 1\(\frac{3}{5}\) B. 1\(\frac{2}{5}\) C. 1\(\frac{1}{5}\) D. \(\frac{1}{5}\)
Show Content
Detailed Solution\(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) = x + y\(\sqrt{15}\)cross multiply to have: \(\sqrt{3}\) + \(\sqrt{5}\) = x\(\sqrt{5}\) + 5y\(\sqrt{3}\) Collect like roots : x\(\sqrt{5}\) = \(\sqrt{5}\) → x = 1 5y\(\sqrt{3}\) = \(\sqrt{3}\) → y = \(\frac{1}{5}\) ∴ ( x + y ) = 1 + \(\frac{1}{5}\) = 1\(\frac{1}{5}\) |
|
8. |
If x = 3 and y = -1, evaluate 2(x\(^2\) - y\(^2\)) A. 24 B. 22 C. 20 D. 16
Show Content
Detailed Solution2(\(x^2 - y^2\))= 2(x + y)(x - y) = 2(3 + (-1))(3 - (-1)) = 2(2)(4) = 16 |
|
9. |
Solve 3x - 2y = 10 and x + 3y = 7 simultaneously A. x = -4 and y = 1 B. x = -1 and y = -4 C. x = 1 and y = 4 D. x = 4 and y = 1
Show Content
Detailed Solution3x - 2y = 10 - - x 3x + 3y = 7 ---x 2 ------------------------ 9x - 6y = 30 2x + 6y = 14 ------------------------- \(\frac{11x}{11} \frac{44}{11}\) x = 4 From x + 3y = 7 3y = 7 - 4 \(\frac{3y}{3}\) = \(\frac{3}{3}\) y = 1 |
|
10. |
The implication x \(\to\) y is equivalent to A. ~ y \(\to\) ~ x B. y \(\to\) ~ x C. ~ x \(\to\) ~ y D. y \(\to\) x |
A |
Preview displays only 10 out of the 50 Questions