Paper 1 | Objectives | 50 Questions
WASSCE/WAEC MAY/JUNE
Year: 2020
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
The best study methods and strategies and tips for successful exam preparation for good grades
Good jobs available to people without a college degree, how to get good job without a college degree?
Past questions are effective for revisions for all tests including WAEC, BECE, SAT, TOEFL, GCSE, IELTS
# | Question | Ans |
---|---|---|
1. |
Evaluate and correct to two decimal places, 75.0785 - 34.624 + 8.83 A. 30.60 B. 50.29 C. 50.28 D. 30.62
Show Content
Detailed Solution75.0785- 34.624 -------------- 40.4545 + 9.83 -------------- 50.28 to 2d.p |
|
2. |
If X = {x : x < 7} and Y = {y:y is a factor of 24} are subsets of \(\mu\) = {1, 2, 3...10} find X \(\cap\) Y. A. {2, 3, 4, 6} B. {1, 2, 3, 4, 6} C. {2, 3, 4, 6, 8} D. {1, 2, 3, 4, 6, 8}
Show Content
Detailed Solution\(\mu\) = {1, 2, 3, 4..., 10}X = {1, 2, 3, 4, 5, 6} Y = {1, 2, 3, 4, 6, 8} Therefore; X \(\cap\) Y = {1, 2, 3, 4, 6} |
|
3. |
Simplify; [(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{2}}\)]\(^{\frac{1}{3}}\) A. \(\frac{3}{4}\) B. \(\frac{9}{16}\) C. \(\frac{3}{8}\) D. \(\frac{1}{4}\)
Show Content
Detailed Solution[(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{2}}\)]\(^{\frac{1}{3}}\)= [(\(\frac{9}{16}\))]\(^{\frac{3}{2}}\) x [(\(\frac{1}{16}\))\(^{\frac{3}{4}}\)]\(^{\frac{1}{3}}\) = [(\(\sqrt{\frac{9}{10}}\))\(^3\) x (4\(\sqrt{\frac{1}{16}})^3\)]\(^{\frac{1}{3}}\) = [(\(\frac{3}{4})^3 \times (\frac{1}{2})^3\)]\(^\frac{1}{3}\) (\(\frac{27}{64} \times \frac{1}{8}\))\(^\frac{1}{3}\) = \({3}\sqrt{\frac{27}{64} \times \frac{1}{8}}\) = \(\frac{3}{4} \times \frac{1}{2}\) = \(\frac{3}{8}\) |
|
4. |
Express 1 + 2 log10\(^3\) in the form log10\(^9\) A. log10\(^{90}\) B. log10\(^{19}\) C. log10\(^{9}\) D. log10\(^{6}\)
Show Content
Detailed Solution1 + 2log\(_{10}^3\)= log\(_{10}^{10} + log_{10}^{3^2}\) = log\(_{10}^{10} + log_{10}^{9}\) = log\(_{10}^{10 \times 90}\) = log\(_{10}^{90}\) |
|
5. |
If 101\(_{\text{two}}\) + 12y = 3.3\(_{\text{five}}\). Find the value of y A. 8 B. 7 C. 6 D. 5
Show Content
Detailed Solution012 + 01 = 01101\(_2\) + 12\(_y\) = 2.3\(_5\) 1 x 2\(^o\) + 0 x 2\(^o\) + 1 x2\(^2\) + 1 x y\(^o\) + 2 x y\(^1\) = 3 x 5\(^o\) + 3 x 5\(^1\) 1 + 4 + 1 + 2y = 3 + 15 6 + 2y = 18 2y = 18 - 6 \(\frac{2y}{2} = \frac{12}{2}\) y = 6 |
|
6. |
An amount of N550,000.00 was realized when a principal, x was saved at 2% simple interest for 5 years. Find the value of x A. N470,000.00 B. N480,000.00 C. N490,000.00 D. N500,000.00
Show Content
Detailed SolutionS.I = \(\frac{x \times 2 \times 5}{100}\) = 0.1xA = P + S.I 550,000 = x + 0.1x \(\frac{550,000}{1.1} = \frac{1.1x}{1.1}\) x = N500,000 |
|
7. |
Given that \(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) = x + y\(\sqrt{15}\), find the value of (x + y) A. 1\(\frac{3}{5}\) B. 1\(\frac{2}{5}\) C. 1\(\frac{1}{5}\) D. \(\frac{1}{5}\)
Show Content
Detailed Solution\(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) = x + y\(\sqrt{15}\)cross multiply to have: \(\sqrt{3}\) + \(\sqrt{5}\) = x\(\sqrt{5}\) + 5y\(\sqrt{3}\) Collect like roots : x\(\sqrt{5}\) = \(\sqrt{5}\) → x = 1 5y\(\sqrt{3}\) = \(\sqrt{3}\) → y = \(\frac{1}{5}\) ∴ ( x + y ) = 1 + \(\frac{1}{5}\) = 1\(\frac{1}{5}\) |
|
8. |
If x = 3 and y = -1, evaluate 2(x\(^2\) - y\(^2\)) A. 24 B. 22 C. 20 D. 16
Show Content
Detailed Solution2(\(x^2 - y^2\))= 2(x + y)(x - y) = 2(3 + (-1))(3 - (-1)) = 2(2)(4) = 16 |
|
9. |
Solve 3x - 2y = 10 and x + 3y = 7 simultaneously A. x = -4 and y = 1 B. x = -1 and y = -4 C. x = 1 and y = 4 D. x = 4 and y = 1
Show Content
Detailed Solution3x - 2y = 10 - - x 3x + 3y = 7 ---x 2 ------------------------ 9x - 6y = 30 2x + 6y = 14 ------------------------- \(\frac{11x}{11} \frac{44}{11}\) x = 4 From x + 3y = 7 3y = 7 - 4 \(\frac{3y}{3}\) = \(\frac{3}{3}\) y = 1 |
|
10. |
The implication x \(\to\) y is equivalent to A. ~ y \(\to\) ~ x B. y \(\to\) ~ x C. ~ x \(\to\) ~ y D. y \(\to\) x |
A |
Preview displays only 10 out of the 50 Questions