Paper 1  Objectives  50 Questions
WASSCE/WAEC MAY/JUNE
Year: 2020
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Apply tips for stressfree eating before and during exams and what to avoid for good grades.
Five revision strategies that are strange but effective for memorization for high exams performance
8 Tips To Be More Productive in Test Revision for good grades and higher performance in exams
#  Question  Ans 

1. 
Evaluate and correct to two decimal places, 75.0785  34.624 + 8.83 A. 30.60 B. 50.29 C. 50.28 D. 30.62
Show Content
Detailed Solution75.0785 34.624  40.4545 + 9.83  50.28 to 2d.p 

2. 
If X = {x : x < 7} and Y = {y:y is a factor of 24} are subsets of \(\mu\) = {1, 2, 3...10} find X \(\cap\) Y. A. {2, 3, 4, 6} B. {1, 2, 3, 4, 6} C. {2, 3, 4, 6, 8} D. {1, 2, 3, 4, 6, 8}
Show Content
Detailed Solution\(\mu\) = {1, 2, 3, 4..., 10}X = {1, 2, 3, 4, 5, 6} Y = {1, 2, 3, 4, 6, 8} Therefore; X \(\cap\) Y = {1, 2, 3, 4, 6} 

3. 
Simplify; [(\(\frac{16}{9}\))\(^{\frac{3}{2}}\) x 16\(^{\frac{3}{2}}\)]\(^{\frac{1}{3}}\) A. \(\frac{3}{4}\) B. \(\frac{9}{16}\) C. \(\frac{3}{8}\) D. \(\frac{1}{4}\)
Show Content
Detailed Solution[(\(\frac{16}{9}\))\(^{\frac{3}{2}}\) x 16\(^{\frac{3}{2}}\)]\(^{\frac{1}{3}}\)= [(\(\frac{9}{16}\))]\(^{\frac{3}{2}}\) x [(\(\frac{1}{16}\))\(^{\frac{3}{4}}\)]\(^{\frac{1}{3}}\) = [(\(\sqrt{\frac{9}{10}}\))\(^3\) x (4\(\sqrt{\frac{1}{16}})^3\)]\(^{\frac{1}{3}}\) = [(\(\frac{3}{4})^3 \times (\frac{1}{2})^3\)]\(^\frac{1}{3}\) (\(\frac{27}{64} \times \frac{1}{8}\))\(^\frac{1}{3}\) = \({3}\sqrt{\frac{27}{64} \times \frac{1}{8}}\) = \(\frac{3}{4} \times \frac{1}{2}\) = \(\frac{3}{8}\) 

4. 
Express 1 + 2 log10\(^3\) in the form log10\(^9\) A. log10\(^{90}\) B. log10\(^{19}\) C. log10\(^{9}\) D. log10\(^{6}\)
Show Content
Detailed Solution1 + 2log\(_{10}^3\)= log\(_{10}^{10} + log_{10}^{3^2}\) = log\(_{10}^{10} + log_{10}^{9}\) = log\(_{10}^{10 \times 90}\) = log\(_{10}^{90}\) 

5. 
If 101\(_{\text{two}}\) + 12y = 3.3\(_{\text{five}}\). Find the value of y A. 8 B. 7 C. 6 D. 5
Show Content
Detailed Solution012 + 01 = 01101\(_2\) + 12\(_y\) = 2.3\(_5\) 1 x 2\(^o\) + 0 x 2\(^o\) + 1 x2\(^2\) + 1 x y\(^o\) + 2 x y\(^1\) = 3 x 5\(^o\) + 3 x 5\(^1\) 1 + 4 + 1 + 2y = 3 + 15 6 + 2y = 18 2y = 18  6 \(\frac{2y}{2} = \frac{12}{2}\) y = 6 

6. 
An amount of N550,000.00 was realized when a principal, x was saved at 2% simple interest for 5 years. Find the value of x A. N470,000.00 B. N480,000.00 C. N490,000.00 D. N500,000.00
Show Content
Detailed SolutionS.I = \(\frac{x \times 2 \times 5}{100}\) = 0.1xA = P + S.I 550,000 = x + 0.1x \(\frac{550,000}{1.1} = \frac{1.1x}{1.1}\) x = N500,000 

7. 
Given that \(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) = x + y\(\sqrt{15}\), find the value of (x + y) A. 1\(\frac{3}{5}\) B. 1\(\frac{2}{5}\) C. 1\(\frac{1}{5}\) D. \(\frac{1}{5}\)
Show Content
Detailed Solution\(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) = x + y\(\sqrt{15}\)cross multiply to have: \(\sqrt{3}\) + \(\sqrt{5}\) = x\(\sqrt{5}\) + 5y\(\sqrt{3}\) Collect like roots : x\(\sqrt{5}\) = \(\sqrt{5}\) → x = 1 5y\(\sqrt{3}\) = \(\sqrt{3}\) → y = \(\frac{1}{5}\) ∴ ( x + y ) = 1 + \(\frac{1}{5}\) = 1\(\frac{1}{5}\) 

8. 
If x = 3 and y = 1, evaluate 2(x\(^2\)  y\(^2\)) A. 24 B. 22 C. 20 D. 16
Show Content
Detailed Solution2(\(x^2  y^2\))= 2(x + y)(x  y) = 2(3 + (1))(3  (1)) = 2(2)(4) = 16 

9. 
Solve 3x  2y = 10 and x + 3y = 7 simultaneously A. x = 4 and y = 1 B. x = 1 and y = 4 C. x = 1 and y = 4 D. x = 4 and y = 1
Show Content
Detailed Solution3x  2y = 10   x 3x + 3y = 7 x 2  9x  6y = 30 2x + 6y = 14  \(\frac{11x}{11} \frac{44}{11}\) x = 4 From x + 3y = 7 3y = 7  4 \(\frac{3y}{3}\) = \(\frac{3}{3}\) y = 1 

10. 
The implication x \(\to\) y is equivalent to A. ~ y \(\to\) ~ x B. y \(\to\) ~ x C. ~ x \(\to\) ~ y D. y \(\to\) x 
A 
Preview displays only 10 out of the 50 Questions