Year : 
1990
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

1 - 10 of 47 Questions

# Question Ans
1.

Simplify 125\(^{\frac{-1}{3}}\) x 49\(^{\frac{-1}{2}}\) x 10\(^0\)

A. 350

B. 35

C. 1/35

D. 1/350

Detailed Solution

125\(^{\frac{-1}{3}}\) x 49\(^{\frac{-1}{2}}\) x 10\(^0\)
= 5\(^{-1}\) x 7\(^{-1}\) x 1
= \(\frac{1}{35}\)
2.

If 3\(^{2x}\) = 27, what is x?

A. 1

B. 1.5

C. 4.5

D. 18

E. 40.5

Detailed Solution

3\(^{2x}\) = 27
3\(^{2x}\) = 3\(^3\)
2x = 3
x = 1.5
3.

Express 0.00562 in standard form

A. 5.62 x 10-3

B. 5.62 x 10-2

C. 562 x 10-2

D. 5.62 x 102

E. 5.62 x 103

Detailed Solution

0.00562 = 5.62 x 10\(^{-3}\)
4.

Given that 1/3log10 P = 1, find the value of P

A. 1/10

B. 3

C. 10

D. 100

E. 1000

Detailed Solution

1/3log10P = 1
log10P1/3 = log1010
P1/3 = 10 P = 1000
5.

Simplify \(\frac{\log \sqrt{8}}{\log 8}\)

A. 1/3

B. 1/2

C. 1/3log√2

D. 1/3log√8

E. 1/2log√2

Detailed Solution

\(\frac{\log \sqrt{8}}{\log 8}\)
= \(\frac{\log 8^{\frac{1}{2}}}{log 8}\)
= \(\frac{\frac{1}{2} \log 8}{\log 8}\)
= \(\frac{1}{2}\)
6.

Evaluate using the logarithm table, log(0.65)2

A. 1.6258

B. 0.6272

C. 0.6258

D. 3.6258

E. 1.6272

Detailed Solution

log(0.65)2 = 2log(0.65) but log0.65 = 1.8129
∴2 x 1.8129 = 3.6258
7.

If log x = \(\bar{2}.3675\) and log y = 0.9750, what is the value of x + y? Correct to three significant figures

A. 1.18

B. 1.31

C. 9.03

D. 9.44

E. 9.46

Detailed Solution

log x = \(\bar{2}.3675\) ; log y = 0.9750
\(x = 10^{\bar{2}.3675} = 0.02331 \)
\(y = 10^{0.9750} = 9.441 \)
\(x + y = 9.4641 \approxeq 9.46\)
8.

While doing his physics practical, Idowu recorded a reading as 1.12cm instead of 1.21cm. Calculate his percentage error

A. 1.17%

B. 6.38%

C. 7.44%

D. 8.035%

E. 9.00%

Detailed Solution

%error = \(\frac{1.21 - 1.12}{1.21} \times 100%\)
= \(\frac{9}{121} \times 100%\)
= 7.44%
9.

Find the 4th term of an A.P, whose first term is 2 and the common difference is 0.5

A. 0.5

B. 2.5

C. 3.5

D. 4

E. 4.5

Detailed Solution

\(U_{n} = a + (n - 1)d\)
\(U_{4} = 2 + (4 - 1) \times 0.5\)
= \(2 + 1.5\)
= 3.5
10.

From the graph determine the roots of the equation y = 2x2 + x - 6

A. -3, 4

B. -2, -6

C. -2, 1.5

D. -1, 1

E. 2, 1.5

C

1.

Simplify 125\(^{\frac{-1}{3}}\) x 49\(^{\frac{-1}{2}}\) x 10\(^0\)

A. 350

B. 35

C. 1/35

D. 1/350

Detailed Solution

125\(^{\frac{-1}{3}}\) x 49\(^{\frac{-1}{2}}\) x 10\(^0\)
= 5\(^{-1}\) x 7\(^{-1}\) x 1
= \(\frac{1}{35}\)
2.

If 3\(^{2x}\) = 27, what is x?

A. 1

B. 1.5

C. 4.5

D. 18

E. 40.5

Detailed Solution

3\(^{2x}\) = 27
3\(^{2x}\) = 3\(^3\)
2x = 3
x = 1.5
3.

Express 0.00562 in standard form

A. 5.62 x 10-3

B. 5.62 x 10-2

C. 562 x 10-2

D. 5.62 x 102

E. 5.62 x 103

Detailed Solution

0.00562 = 5.62 x 10\(^{-3}\)
4.

Given that 1/3log10 P = 1, find the value of P

A. 1/10

B. 3

C. 10

D. 100

E. 1000

Detailed Solution

1/3log10P = 1
log10P1/3 = log1010
P1/3 = 10 P = 1000
5.

Simplify \(\frac{\log \sqrt{8}}{\log 8}\)

A. 1/3

B. 1/2

C. 1/3log√2

D. 1/3log√8

E. 1/2log√2

Detailed Solution

\(\frac{\log \sqrt{8}}{\log 8}\)
= \(\frac{\log 8^{\frac{1}{2}}}{log 8}\)
= \(\frac{\frac{1}{2} \log 8}{\log 8}\)
= \(\frac{1}{2}\)
6.

Evaluate using the logarithm table, log(0.65)2

A. 1.6258

B. 0.6272

C. 0.6258

D. 3.6258

E. 1.6272

Detailed Solution

log(0.65)2 = 2log(0.65) but log0.65 = 1.8129
∴2 x 1.8129 = 3.6258
7.

If log x = \(\bar{2}.3675\) and log y = 0.9750, what is the value of x + y? Correct to three significant figures

A. 1.18

B. 1.31

C. 9.03

D. 9.44

E. 9.46

Detailed Solution

log x = \(\bar{2}.3675\) ; log y = 0.9750
\(x = 10^{\bar{2}.3675} = 0.02331 \)
\(y = 10^{0.9750} = 9.441 \)
\(x + y = 9.4641 \approxeq 9.46\)
8.

While doing his physics practical, Idowu recorded a reading as 1.12cm instead of 1.21cm. Calculate his percentage error

A. 1.17%

B. 6.38%

C. 7.44%

D. 8.035%

E. 9.00%

Detailed Solution

%error = \(\frac{1.21 - 1.12}{1.21} \times 100%\)
= \(\frac{9}{121} \times 100%\)
= 7.44%
9.

Find the 4th term of an A.P, whose first term is 2 and the common difference is 0.5

A. 0.5

B. 2.5

C. 3.5

D. 4

E. 4.5

Detailed Solution

\(U_{n} = a + (n - 1)d\)
\(U_{4} = 2 + (4 - 1) \times 0.5\)
= \(2 + 1.5\)
= 3.5
10.

From the graph determine the roots of the equation y = 2x2 + x - 6

A. -3, 4

B. -2, -6

C. -2, 1.5

D. -1, 1

E. 2, 1.5

C