Paper 1 | Objectives | 46 Questions
WASSCE/WAEC MAY/JUNE
Year: 2006
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Past questions are effective for revisions for all tests including WAEC, BECE, SAT, TOEFL, GCSE, IELTS
Revision tips on test preparation for Grade A students to. Grade A students tips for any test.
Effective ways of coping with exam stress and test anxiety which is supported by Science
# | Question | Ans |
---|---|---|
1. |
Evaluate (0.13)\(^3\)correct to three significant figures A. 0.00219 B. 0.00220 C. 0.00300 D. 0.00390
Show Content
Detailed Solution(0.13)\(^3\) = 0.13 x 0.13 x 0.13 = 0.002197= 0.00220 (3 s.f) |
|
2. |
Simplify: 11011\(_2\) - 1101\(_2\) A. 101000\(_2\) B. 1100\(_2\) C. 1110\(_2\) D. 1011\(_2\)
Show Content
Detailed Solution11011\(_2\) - 1101\(_2\) = 1110\(_2\) |
|
3. |
Simplify \(\frac{25 \frac{2}{3} \div 25 \frac{1}{6}}{( \frac{1}{5})^{-\frac{7}{6}} \times ( \frac{1}{5})^{\frac{1}{6}}}\) A. 25 B. \(\frac{1}{5}\) C. 1 D. \(\frac{1}{25}\)
Show Content
Detailed Solution\(\frac{25 \frac{2}{3} \div 25 \frac{1}{6}}{( \frac{1}{5})^{-\frac{7}{6}} \times ( \frac{1}{5})^{\frac{1}{6}}}\) = \(\frac{25^{4 - \frac{1}{6}}}{(\frac{1}{5})^{-7 + \frac{1}{6}}}\)= \(\frac{25^{\frac{1}{2}}}{(\frac{1}{5})^{-1}}\) = \(\frac{(5^2)^{\frac{1}{2}}}{(5^{-1})^{-1}}\) = \(\frac{5}{5}\) = 1 |
|
4. |
Simplify \(\frac{x - 4}{4} - \frac{x - 3}{6}\) A. \(\frac{x - 18}{12}\) B. \(\frac{x - 6}{12}\) C. \(\frac{x - 18}{24}\) D. \(\frac{x - 6}{24}\)
Show Content
Detailed Solution\(\frac{x - 4}{4} - \frac{x - 3}{6}\) = \(\frac{3(x - 4) - 2(x - 3)}{12}\)= \(\frac{3x -12 - 2x + 6}{12}\) = \(\frac{3x - 2x - 12 + 6}{12}\) = \(\frac{x - 6}{12}\) |
|
5. |
Given that y = 1 - \(\frac{2x}{4x - 3}\), find the value of x for which y is undefined A. 3 B. \(\frac{3}{4}\) C. \(\frac{-3}{4}\) D. -3
Show Content
Detailed Solutionfor undefined expression, the denomination is zero 4x - 3 = 04x = 3; x = \(\frac{3}{4}\) |
|
6. |
P is a point on the same plane with a fixed point A. If P moves such that it is always equidistant from A, the locus of P is A. a straight line joining A and P B. the perpendicular bisector of AP C. a circle with centre A D. the triangle with centre P |
C |
7. |
A fair coin is tossed three times. Find the probability of getting two heads and one tail. A. \(\frac{1}{2}\) B. \(\frac{3}{8}\) C. \(\frac{1}{4}\) D. \(\frac{1}{8}\)
Show Content
Detailed SolutionPr(head) = \(\frac{1}{2}\), Pr(tail) = \(\frac{1}{2}\):Pr(2 heads)= \(\frac{1}{2}\) x \(\frac{1}{2}\) = \(\frac{1}{4}\) Pr(2 heads and tail) 3 times = (\(\frac{1}{4}\) x \(\frac{1}{2}\)) x 3 = \(\frac{3}{8}\) |
|
8. |
If 30% of y is equal to x, what in terms of x, is 30% of 3y? A. \(\frac{x}{9}\) B. \(\frac{x}{3}\) C. x D. 3x
Show Content
Detailed SolutionIf 30% of y = x, then 30% of 3y = 3x |
|
9. |
A baker used 40% of a 50kg bag of flour. If \(\frac{1}{8}\) of the amount used was for the cake, how many kilogram of flour was used for the cake? A. 2\(\frac{1}{2}\) B. 6\(\frac{1}{2}\) C. 15\(\frac{3}{8}\) D. 17\(\frac{1}{2}\)
Show Content
Detailed Solution\(\frac{40}{100} \times 50\)kg = 20kg\(\frac{1}{8}\) of 20kg for cake; \(\frac{1}{8}\) x \(\frac{20}{1}\) = 2\(\frac{1}{2}\)kg |
|
10. |
If tan y = 0.404, where y is acute, find cos 2y A. 0.035 B. 0.719 C. 0.808 D. 0.927
Show Content
Detailed Solutiontan y = 0.404; y = tan-1 0.0404(tables);y = 22ocos 2y = cos 2(22o); cos 44o = 0.719 |
Preview displays only 10 out of the 46 Questions