Paper 1 | Objectives | 50 Questions
WASSCE/WAEC MAY/JUNE
Year: 2019
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Managing Stress and anxiety in exams, 10 tips and strategies for Coping exam stress and test anxiety.
These are the three things to do in test preparation for higher grades and excellent performance.
Did you apply the MTN Ghana Bright Scholarships 2022 for Ghana Undergraduate Students?
# | Question | Ans |
---|---|---|
1. |
Express, correct to three significant figures, 0.003597. A. 0.359 B. 0.004 C. 0.00360 D. 0.00359
Show Content
Detailed Solution0,00 3597 = 0.00360 to 3 s.f |
|
2. |
Evaluate: (0.064) - \(\frac{1}{3}\) A. \(\frac{5}{2}\) B. \(\frac{2}{5}\) C. -\(\frac{2}{5}\) D. -\(\frac{5}{2}\)
Show Content
Detailed Solution(0.064)\(^{- \frac{1}{3}}\)= (\(\frac{64}{1000}\))\(^{-\frac{1}{3}}\) = 3\(\sqrt{\frac{1000}{64}}\) = \(\frac{10}{4}\) = \(\frac{5}{2}\) |
|
3. |
Solve: \(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = 4 A. y = 19 B. y = -19 C. y = -29 D. y = 29
Show Content
Detailed Solution\(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = \(\frac{4}{1}\)- \(\frac{3(y + 1) - 2(2y - 1)}{6} = \frac{4}{1}\) 3y + 3 - 4y + 2 = 24 - y + 5 = 24 - y = 24 - 5 = 19 y = - 19 |
|
4. |
Simplify, correct to three significant figures, (27.63)\(^2\) - (12.37)\(^2\) A. 614 B. 612 C. 611 D. 610
Show Content
Detailed Solution(27.63)\(^2\) - (12.37)\(^2\)= (27.63 + 12.37)(27.63 - 12.37) = 40 x 15.26 = 610 |
|
5. |
If 7 + y = 4 (mod 8), find the least value of y, 10 \(\leq y \leq 30\) A. 11 B. 13 C. 19 D. 21
Show Content
Detailed Solution7 + y = 4 (mod 8)y = 4 - 7 (mod 8) y = -3 + 8 (mod 8) y = 5 + 8 (mod 8) y = 13 |
|
6. |
If T = {prime numbers} and M = {odd numbers} are subsets of \(\mu\) = {x : 0 < x < 10} and x is an integer, find (T\(^{\prime}\) \(\mu\) M\(^{\prime}\)). A. {4, 6, 8, 10} B. {1 C. {1, 2, 4, 6, 8, 10} D. {1, 2, 3, 5, 7, 8, 9}
Show Content
Detailed SolutionT = {2, 3, 5, 7}M = {1, 3, 5, 7, 9} \(\mu\) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} T\(^{\prime}\) = = {1, 4, 6, 8, 9, 10} M\(^{\prime}\) = {2, 4, 6, 8, 10} (T\(^{\prime}\) \(\cap\) M\(^{\prime}\)) = {4, 6, 8, 10} |
|
7. |
Evaluate; \(\frac{\log_3 9 - \log_2 8}{\log_3 9}\) A. -\(\frac{1}{3}\) B. \(\frac{1}{2}\) C. \(\frac{1}{3}\) D. -\(\frac{1}{2}\)
Show Content
Detailed Solution\(\frac{\log_3 9 - \log_2 8}{\log_3 9}\)= \(\frac{\log_3 3^2 - \log_2 2^3}{\log_3 3^2}\) = \(\frac{2 -3}{2}\) = \(\frac{-1}{2}\) |
|
8. |
If 23\(_y\) = 1111\(_{\text{two}}\), find the value of y A. 4 B. 5 C. 6 D. 7
Show Content
Detailed Solution23\(_y\) = 1111\(_{\text{two}}\),2 x y\(^1\) + 3 x y\(^0\) = 1 x 2\(^3\) + 1 x 2\(^1\) + 1 x 2\(^o\) 2y + 3 = 8 + 4 + 2 + 1 2y + 3 = 15 \(\frac{2y}{2}\) \(\frac{12}{2}\) y = 6 |
|
9. |
If 6, P, and 14 are consecutive terms in an Arithmetic Progression (AP), find the value of P. A. 9 B. 10 C. 6 D. 8
Show Content
Detailed Solution6, p, 1414 - p = p - 6 14 + 6 = p - 6 14 + 6 = p + p \(\frac{2p}{2}\) = \(\frac{20}{2}\) p = 10 |
|
10. |
Evaluate: 2\(\sqrt{28} - 3\sqrt{50} + \sqrt{72}\) A. 4\(\sqrt{7} - 21 \sqrt{2}\) B. 4\(\sqrt{7} - 11 \sqrt{2}\) C. 4\(\sqrt{7} - 9 \sqrt{2}\) D. 4\(\sqrt{7} + \sqrt{2}\)
Show Content
Detailed Solution2\(\sqrt{28} - 3\sqrt{50} + \sqrt{22}\)4\(\sqrt{7} - 15\sqrt{2} + 6\sqrt{2}\) 6\(\sqrt{7} - 9\sqrt{2}\) |
Preview displays only 10 out of the 50 Questions