Paper 1 | Objectives | 50 Questions
WASSCE/WAEC MAY/JUNE
Year: 2019
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Middle East and North Africa MENA Scholarship Program (MSP) initiative provides scholarships
Adequate preparation and effective revision strategies tips to get a high score 320 in JAMB in 2022
8 Tips To Be More Productive in Test Revision for good grades and higher performance in exams
# | Question | Ans |
---|---|---|
1. |
Express, correct to three significant figures, 0.003597. A. 0.359 B. 0.004 C. 0.00360 D. 0.00359
Show Content
Detailed Solution0,00 3597 = 0.00360 to 3 s.f |
|
2. |
Evaluate: (0.064) - \(\frac{1}{3}\) A. \(\frac{5}{2}\) B. \(\frac{2}{5}\) C. -\(\frac{2}{5}\) D. -\(\frac{5}{2}\)
Show Content
Detailed Solution(0.064)\(^{- \frac{1}{3}}\)= (\(\frac{64}{1000}\))\(^{-\frac{1}{3}}\) = 3\(\sqrt{\frac{1000}{64}}\) = \(\frac{10}{4}\) = \(\frac{5}{2}\) |
|
3. |
Solve: \(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = 4 A. y = 19 B. y = -19 C. y = -29 D. y = 29
Show Content
Detailed Solution\(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = \(\frac{4}{1}\)- \(\frac{3(y + 1) - 2(2y - 1)}{6} = \frac{4}{1}\) 3y + 3 - 4y + 2 = 24 - y + 5 = 24 - y = 24 - 5 = 19 y = - 19 |
|
4. |
Simplify, correct to three significant figures, (27.63)\(^2\) - (12.37)\(^2\) A. 614 B. 612 C. 611 D. 610
Show Content
Detailed Solution(27.63)\(^2\) - (12.37)\(^2\)= (27.63 + 12.37)(27.63 - 12.37) = 40 x 15.26 = 610 |
|
5. |
If 7 + y = 4 (mod 8), find the least value of y, 10 \(\leq y \leq 30\) A. 11 B. 13 C. 19 D. 21
Show Content
Detailed Solution7 + y = 4 (mod 8)y = 4 - 7 (mod 8) y = -3 + 8 (mod 8) y = 5 + 8 (mod 8) y = 13 |
|
6. |
If T = {prime numbers} and M = {odd numbers} are subsets of \(\mu\) = {x : 0 < x < 10} and x is an integer, find (T\(^{\prime}\) \(\mu\) M\(^{\prime}\)). A. {4, 6, 8, 10} B. {1 C. {1, 2, 4, 6, 8, 10} D. {1, 2, 3, 5, 7, 8, 9}
Show Content
Detailed SolutionT = {2, 3, 5, 7}M = {1, 3, 5, 7, 9} \(\mu\) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} T\(^{\prime}\) = = {1, 4, 6, 8, 9, 10} M\(^{\prime}\) = {2, 4, 6, 8, 10} (T\(^{\prime}\) \(\cap\) M\(^{\prime}\)) = {4, 6, 8, 10} |
|
7. |
Evaluate; \(\frac{\log_3 9 - \log_2 8}{\log_3 9}\) A. -\(\frac{1}{3}\) B. \(\frac{1}{2}\) C. \(\frac{1}{3}\) D. -\(\frac{1}{2}\)
Show Content
Detailed Solution\(\frac{\log_3 9 - \log_2 8}{\log_3 9}\)= \(\frac{\log_3 3^2 - \log_2 2^3}{\log_3 3^2}\) = \(\frac{2 -3}{2}\) = \(\frac{-1}{2}\) |
|
8. |
If 23\(_y\) = 1111\(_{\text{two}}\), find the value of y A. 4 B. 5 C. 6 D. 7
Show Content
Detailed Solution23\(_y\) = 1111\(_{\text{two}}\),2 x y\(^1\) + 3 x y\(^0\) = 1 x 2\(^3\) + 1 x 2\(^1\) + 1 x 2\(^o\) 2y + 3 = 8 + 4 + 2 + 1 2y + 3 = 15 \(\frac{2y}{2}\) \(\frac{12}{2}\) y = 6 |
|
9. |
If 6, P, and 14 are consecutive terms in an Arithmetic Progression (AP), find the value of P. A. 9 B. 10 C. 6 D. 8
Show Content
Detailed Solution6, p, 1414 - p = p - 6 14 + 6 = p - 6 14 + 6 = p + p \(\frac{2p}{2}\) = \(\frac{20}{2}\) p = 10 |
|
10. |
Evaluate: 2\(\sqrt{28} - 3\sqrt{50} + \sqrt{72}\) A. 4\(\sqrt{7} - 21 \sqrt{2}\) B. 4\(\sqrt{7} - 11 \sqrt{2}\) C. 4\(\sqrt{7} - 9 \sqrt{2}\) D. 4\(\sqrt{7} + \sqrt{2}\)
Show Content
Detailed Solution2\(\sqrt{28} - 3\sqrt{50} + \sqrt{22}\)4\(\sqrt{7} - 15\sqrt{2} + 6\sqrt{2}\) 6\(\sqrt{7} - 9\sqrt{2}\) |
Preview displays only 10 out of the 50 Questions