Paper 1 | Objectives | 50 Questions
WASSCE/WAEC MAY/JUNE
Year: 2019
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Apply tips for stress-free eating before and during exams and what to avoid for good grades.
These are the three things to do in test preparation for higher grades and excellent performance.
Managing Stress and anxiety in exams, 10 tips and strategies for Coping exam stress and test anxiety.
# | Question | Ans |
---|---|---|
1. |
Express, correct to three significant figures, 0.003597. A. 0.359 B. 0.004 C. 0.00360 D. 0.00359
Show Content
Detailed Solution0,00 3597 = 0.00360 to 3 s.f |
|
2. |
Evaluate: (0.064) - \(\frac{1}{3}\) A. \(\frac{5}{2}\) B. \(\frac{2}{5}\) C. -\(\frac{2}{5}\) D. -\(\frac{5}{2}\)
Show Content
Detailed Solution(0.064)\(^{- \frac{1}{3}}\)= (\(\frac{64}{1000}\))\(^{-\frac{1}{3}}\) = 3\(\sqrt{\frac{1000}{64}}\) = \(\frac{10}{4}\) = \(\frac{5}{2}\) |
|
3. |
Solve: \(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = 4 A. y = 19 B. y = -19 C. y = -29 D. y = 29
Show Content
Detailed Solution\(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = \(\frac{4}{1}\)- \(\frac{3(y + 1) - 2(2y - 1)}{6} = \frac{4}{1}\) 3y + 3 - 4y + 2 = 24 - y + 5 = 24 - y = 24 - 5 = 19 y = - 19 |
|
4. |
Simplify, correct to three significant figures, (27.63)\(^2\) - (12.37)\(^2\) A. 614 B. 612 C. 611 D. 610
Show Content
Detailed Solution(27.63)\(^2\) - (12.37)\(^2\)= (27.63 + 12.37)(27.63 - 12.37) = 40 x 15.26 = 610 |
|
5. |
If 7 + y = 4 (mod 8), find the least value of y, 10 \(\leq y \leq 30\) A. 11 B. 13 C. 19 D. 21
Show Content
Detailed Solution7 + y = 4 (mod 8)y = 4 - 7 (mod 8) y = -3 + 8 (mod 8) y = 5 + 8 (mod 8) y = 13 |
|
6. |
If T = {prime numbers} and M = {odd numbers} are subsets of \(\mu\) = {x : 0 < x < 10} and x is an integer, find (T\(^{\prime}\) \(\mu\) M\(^{\prime}\)). A. {4, 6, 8, 10} B. {1 C. {1, 2, 4, 6, 8, 10} D. {1, 2, 3, 5, 7, 8, 9}
Show Content
Detailed SolutionT = {2, 3, 5, 7}M = {1, 3, 5, 7, 9} \(\mu\) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} T\(^{\prime}\) = = {1, 4, 6, 8, 9, 10} M\(^{\prime}\) = {2, 4, 6, 8, 10} (T\(^{\prime}\) \(\cap\) M\(^{\prime}\)) = {4, 6, 8, 10} |
|
7. |
Evaluate; \(\frac{\log_3 9 - \log_2 8}{\log_3 9}\) A. -\(\frac{1}{3}\) B. \(\frac{1}{2}\) C. \(\frac{1}{3}\) D. -\(\frac{1}{2}\)
Show Content
Detailed Solution\(\frac{\log_3 9 - \log_2 8}{\log_3 9}\)= \(\frac{\log_3 3^2 - \log_2 2^3}{\log_3 3^2}\) = \(\frac{2 -3}{2}\) = \(\frac{-1}{2}\) |
|
8. |
If 23\(_y\) = 1111\(_{\text{two}}\), find the value of y A. 4 B. 5 C. 6 D. 7
Show Content
Detailed Solution23\(_y\) = 1111\(_{\text{two}}\),2 x y\(^1\) + 3 x y\(^0\) = 1 x 2\(^3\) + 1 x 2\(^1\) + 1 x 2\(^o\) 2y + 3 = 8 + 4 + 2 + 1 2y + 3 = 15 \(\frac{2y}{2}\) \(\frac{12}{2}\) y = 6 |
|
9. |
If 6, P, and 14 are consecutive terms in an Arithmetic Progression (AP), find the value of P. A. 9 B. 10 C. 6 D. 8
Show Content
Detailed Solution6, p, 1414 - p = p - 6 14 + 6 = p - 6 14 + 6 = p + p \(\frac{2p}{2}\) = \(\frac{20}{2}\) p = 10 |
|
10. |
Evaluate: 2\(\sqrt{28} - 3\sqrt{50} + \sqrt{72}\) A. 4\(\sqrt{7} - 21 \sqrt{2}\) B. 4\(\sqrt{7} - 11 \sqrt{2}\) C. 4\(\sqrt{7} - 9 \sqrt{2}\) D. 4\(\sqrt{7} + \sqrt{2}\)
Show Content
Detailed Solution2\(\sqrt{28} - 3\sqrt{50} + \sqrt{22}\)4\(\sqrt{7} - 15\sqrt{2} + 6\sqrt{2}\) 6\(\sqrt{7} - 9\sqrt{2}\) |
Preview displays only 10 out of the 50 Questions