Year : 
2019
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

1 - 10 of 50 Questions

# Question Ans
1.

Express, correct to three significant figures, 0.003597.

A. 0.359

B. 0.004

C. 0.00360

D. 0.00359

Detailed Solution

0,00 3597 = 0.00360 to 3 s.f
2.

Evaluate: (0.064) - \(\frac{1}{3}\)

A. \(\frac{5}{2}\)

B. \(\frac{2}{5}\)

C. -\(\frac{2}{5}\)

D. -\(\frac{5}{2}\)

Detailed Solution

(0.064)\(^{- \frac{1}{3}}\)
= (\(\frac{64}{1000}\))\(^{-\frac{1}{3}}\)
= 3\(\sqrt{\frac{1000}{64}}\)
= \(\frac{10}{4}\)
= \(\frac{5}{2}\)
3.

Solve: \(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = 4

A. y = 19

B. y = -19

C. y = -29

D. y = 29

Detailed Solution

\(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = \(\frac{4}{1}\)
- \(\frac{3(y + 1) - 2(2y - 1)}{6} = \frac{4}{1}\)
3y + 3 - 4y + 2 = 24
- y + 5 = 24
- y = 24 - 5 = 19
y = - 19
4.

Simplify, correct to three significant figures, (27.63)\(^2\) - (12.37)\(^2\)

A. 614

B. 612

C. 611

D. 610

Detailed Solution

(27.63)\(^2\) - (12.37)\(^2\)
= (27.63 + 12.37)(27.63 - 12.37)
= 40 x 15.26
= 610
5.

If 7 + y = 4 (mod 8), find the least value of y, 10 \(\leq y \leq 30\)

A. 11

B. 13

C. 19

D. 21

Detailed Solution

7 + y = 4 (mod 8)
y = 4 - 7 (mod 8)
y = -3 + 8 (mod 8)
y = 5 + 8 (mod 8)
y = 13
6.

If T = {prime numbers} and M = {odd numbers} are subsets of \(\mu\) = {x : 0 < x < 10} and x is an integer, find (T\(^{\prime}\) \(\mu\) M\(^{\prime}\)).

A. {4, 6, 8, 10}

B. {1

C. {1, 2, 4, 6, 8, 10}

D. {1, 2, 3, 5, 7, 8, 9}

Detailed Solution

T = {2, 3, 5, 7}
M = {1, 3, 5, 7, 9}
\(\mu\) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
T\(^{\prime}\) = = {1, 4, 6, 8, 9, 10}
M\(^{\prime}\) = {2, 4, 6, 8, 10}
(T\(^{\prime}\) \(\cap\) M\(^{\prime}\)) = {4, 6, 8, 10}
7.

Evaluate; \(\frac{\log_3 9 - \log_2 8}{\log_3 9}\)

A. -\(\frac{1}{3}\)

B. \(\frac{1}{2}\)

C. \(\frac{1}{3}\)

D. -\(\frac{1}{2}\)

Detailed Solution

\(\frac{\log_3 9 - \log_2 8}{\log_3 9}\)
= \(\frac{\log_3 3^2 - \log_2 2^3}{\log_3 3^2}\)
= \(\frac{2 -3}{2}\)
= \(\frac{-1}{2}\)
8.

If 23\(_y\) = 1111\(_{\text{two}}\), find the value of y

A. 4

B. 5

C. 6

D. 7

Detailed Solution

23\(_y\) = 1111\(_{\text{two}}\),
2 x y\(^1\) + 3 x y\(^0\) = 1 x 2\(^3\) + 1 x 2\(^1\) + 1 x 2\(^o\)
2y + 3 = 8 + 4 + 2 + 1
2y + 3 = 15
\(\frac{2y}{2}\)
\(\frac{12}{2}\)
y = 6
9.

If 6, P, and 14 are consecutive terms in an Arithmetic Progression (AP), find the value of P.

A. 9

B. 10

C. 6

D. 8

Detailed Solution

6, p, 14
14 - p = p - 6
14 + 6 = p - 6
14 + 6 = p + p
\(\frac{2p}{2}\)
= \(\frac{20}{2}\)
p = 10
10.

Evaluate: 2\(\sqrt{28} - 3\sqrt{50} + \sqrt{72}\)

A. 4\(\sqrt{7} - 21 \sqrt{2}\)

B. 4\(\sqrt{7} - 11 \sqrt{2}\)

C. 4\(\sqrt{7} - 9 \sqrt{2}\)

D. 4\(\sqrt{7} + \sqrt{2}\)

Detailed Solution

2\(\sqrt{28} - 3\sqrt{50} + \sqrt{22}\)
4\(\sqrt{7} - 15\sqrt{2} + 6\sqrt{2}\)
6\(\sqrt{7} - 9\sqrt{2}\)
1.

Express, correct to three significant figures, 0.003597.

A. 0.359

B. 0.004

C. 0.00360

D. 0.00359

Detailed Solution

0,00 3597 = 0.00360 to 3 s.f
2.

Evaluate: (0.064) - \(\frac{1}{3}\)

A. \(\frac{5}{2}\)

B. \(\frac{2}{5}\)

C. -\(\frac{2}{5}\)

D. -\(\frac{5}{2}\)

Detailed Solution

(0.064)\(^{- \frac{1}{3}}\)
= (\(\frac{64}{1000}\))\(^{-\frac{1}{3}}\)
= 3\(\sqrt{\frac{1000}{64}}\)
= \(\frac{10}{4}\)
= \(\frac{5}{2}\)
3.

Solve: \(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = 4

A. y = 19

B. y = -19

C. y = -29

D. y = 29

Detailed Solution

\(\frac{y + 1}{2} - \frac{2y - 1}{3}\) = \(\frac{4}{1}\)
- \(\frac{3(y + 1) - 2(2y - 1)}{6} = \frac{4}{1}\)
3y + 3 - 4y + 2 = 24
- y + 5 = 24
- y = 24 - 5 = 19
y = - 19
4.

Simplify, correct to three significant figures, (27.63)\(^2\) - (12.37)\(^2\)

A. 614

B. 612

C. 611

D. 610

Detailed Solution

(27.63)\(^2\) - (12.37)\(^2\)
= (27.63 + 12.37)(27.63 - 12.37)
= 40 x 15.26
= 610
5.

If 7 + y = 4 (mod 8), find the least value of y, 10 \(\leq y \leq 30\)

A. 11

B. 13

C. 19

D. 21

Detailed Solution

7 + y = 4 (mod 8)
y = 4 - 7 (mod 8)
y = -3 + 8 (mod 8)
y = 5 + 8 (mod 8)
y = 13
6.

If T = {prime numbers} and M = {odd numbers} are subsets of \(\mu\) = {x : 0 < x < 10} and x is an integer, find (T\(^{\prime}\) \(\mu\) M\(^{\prime}\)).

A. {4, 6, 8, 10}

B. {1

C. {1, 2, 4, 6, 8, 10}

D. {1, 2, 3, 5, 7, 8, 9}

Detailed Solution

T = {2, 3, 5, 7}
M = {1, 3, 5, 7, 9}
\(\mu\) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
T\(^{\prime}\) = = {1, 4, 6, 8, 9, 10}
M\(^{\prime}\) = {2, 4, 6, 8, 10}
(T\(^{\prime}\) \(\cap\) M\(^{\prime}\)) = {4, 6, 8, 10}
7.

Evaluate; \(\frac{\log_3 9 - \log_2 8}{\log_3 9}\)

A. -\(\frac{1}{3}\)

B. \(\frac{1}{2}\)

C. \(\frac{1}{3}\)

D. -\(\frac{1}{2}\)

Detailed Solution

\(\frac{\log_3 9 - \log_2 8}{\log_3 9}\)
= \(\frac{\log_3 3^2 - \log_2 2^3}{\log_3 3^2}\)
= \(\frac{2 -3}{2}\)
= \(\frac{-1}{2}\)
8.

If 23\(_y\) = 1111\(_{\text{two}}\), find the value of y

A. 4

B. 5

C. 6

D. 7

Detailed Solution

23\(_y\) = 1111\(_{\text{two}}\),
2 x y\(^1\) + 3 x y\(^0\) = 1 x 2\(^3\) + 1 x 2\(^1\) + 1 x 2\(^o\)
2y + 3 = 8 + 4 + 2 + 1
2y + 3 = 15
\(\frac{2y}{2}\)
\(\frac{12}{2}\)
y = 6
9.

If 6, P, and 14 are consecutive terms in an Arithmetic Progression (AP), find the value of P.

A. 9

B. 10

C. 6

D. 8

Detailed Solution

6, p, 14
14 - p = p - 6
14 + 6 = p - 6
14 + 6 = p + p
\(\frac{2p}{2}\)
= \(\frac{20}{2}\)
p = 10
10.

Evaluate: 2\(\sqrt{28} - 3\sqrt{50} + \sqrt{72}\)

A. 4\(\sqrt{7} - 21 \sqrt{2}\)

B. 4\(\sqrt{7} - 11 \sqrt{2}\)

C. 4\(\sqrt{7} - 9 \sqrt{2}\)

D. 4\(\sqrt{7} + \sqrt{2}\)

Detailed Solution

2\(\sqrt{28} - 3\sqrt{50} + \sqrt{22}\)
4\(\sqrt{7} - 15\sqrt{2} + 6\sqrt{2}\)
6\(\sqrt{7} - 9\sqrt{2}\)