Paper 1 | Objectives | 47 Questions
WASSCE/WAEC MAY/JUNE
Year: 2005
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Middle East and North Africa MENA Scholarship Program (MSP) initiative provides scholarships
Get free IT courses with certificates online for your skills upgrade in this era of Covid-19.
Tips to make the best study space and quality time for studies are essential.
# | Question | Ans |
---|---|---|
1. |
Correct 0.04945 to two significant figures A. 0.040 B. 0.049 C. 0.050 D. 0.49
Show Content
Detailed Solution0.04945 \(\approxeq\) 0.049. (to 2 sig. figs) |
|
2. |
Simplify \(\frac{5}{\sqrt{3}}-\frac{3}{\sqrt{2}}\) A. \(\frac{1}{6}(5\sqrt{3}-3\sqrt{2}\) B. \(\frac{1}{6}(15\sqrt{3}-6\sqrt{2}\) C. \(\frac{1}{6}(3\sqrt{2}-\sqrt{3}\) D. \(\frac{1}{6}(10\sqrt{3}-9\sqrt{2}\)
Show Content
Detailed Solution\(\frac{5}{\sqrt{3}}-\frac{3}{\sqrt{2}}=\frac{5\sqrt{2}-3\sqrt{3}}{\sqrt{6}}\\=\frac{5\sqrt{2}-3\sqrt{3}}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}Rationalize\\ \frac{\sqrt{6}(5\sqrt{2}-3\sqrt{3})}{6}\\ \frac{5\sqrt{12}-3\sqrt{18}}{6}=\frac{10\sqrt{3}-9\sqrt{2}}{6}\\ \frac{1}{6}(10\sqrt{3}-9\sqrt{2})\) |
|
3. |
Evaluate, correct to the nearest whole number \(7\frac{1}{2}-\left(2\frac{1}{2}+3\right)\div\frac{33}{2}\) A. 33 B. 8 C. 7 D. o
Show Content
Detailed Solution\(7\frac{1}{2}-\left(2\frac{1}{2}+3\right)\div\frac{33}{2}\\=\frac{15}{2}-\left(\frac{5}{2}+\frac{3}{1}\right)\times\frac{2}{33}\\ =\frac{15}{2}-\left(\frac{5+6}{2}\right)\times \frac{2}{33}=\frac{15}{2}-\frac{11}{2}\times \frac{2}{33}=\frac{15}{2}-\frac{1}{3}\\ =\frac{45-2}{6}=\frac{43}{6}\) |
|
4. |
Simplify the expression \(log_{10}18 - log_{10}2.88+log_{10}16\) A. 31.12 B. 3.112 C. 2 D. 1
Show Content
Detailed Solution\(log_{10}18 - log_{10}2.88+log_{10}16\\=log_{10}18 - log_{10}\left(\frac{288}{100}\right)+log_{10}16 = log_{10}\left(\frac{18\times 16}{1}\times \frac{100}{288}\right)\\ =log_{10}\left(\frac{288\times 100}{288}\right)=log_{10}100=log_{10}10^2=2log_{10}10=2\) |
|
5. |
Find the equation whose roots are 2 and \(-3\frac{1}{2}\) A. 2x2 + 3x + 14 = 0 B. 2x2 + 5x + 7 = 0 C. 2x2 + 5x - 7 = 0 D. 2x2 + 3x - 14 = 0
Show Content
Detailed Solutionx2 (sum of roots)x + (product of roots) = 0Sum of roots \(2+-3\frac{1}{2} = -1\frac{1}{2}=-\frac{1}{2}\) Product of roots \(=2 \times -3\frac{1}{2}=-7\\ x^2-\left(\frac{-3}{2}\right)x+(-7)=0\Rightarrow 2x^2 + 3x - 14 = 0\) |
|
6. |
A man bought 220 mangoes at N5x. He sold each for 3x kobo and made a gain of N8. Find the value of x A. 2 B. 5 C. 6 D. 10
Show Content
Detailed SolutionThe cost price of the whole mangoes = N5xThe sold amount of the mangoes = 3x * 220 = N6.60x The gain made on mangoes = N6.60x - N5x = N8.00 => N1.60x = N8 => \(x=\frac{8}{1.60}=\frac{1}{0.2}=\frac{10}{2}=5\) |
|
7. |
From a point P, R is 5km due west and 12km due south. Find the distance between P and R A. 5km B. 12km C. 13km D. 17km
Show Content
Detailed Solution\(|PR|^2=|PO|^2+|OR|^2\\ |PR|^2=5^2+12^2\\ |PR|=\sqrt{25+144}=\sqrt{169}=13km\) |
|
8. |
A fair die is tossed once, what is the probability of obtaining neither 5 or 2 A. \(\frac{5}{6}\) B. \(\frac{2}{3}\) C. \(\frac{1}{2}\) D. \(\frac{1}{6}\)
Show Content
Detailed SolutionProbability of obtaining a 5 is P(5)=\(\frac{1}{6}\)Probability of obtaining a 2 is P(2)=\(\frac{1}{6}\) Probability of obatining either 2 or 5 = P(2∪5) = \(\frac{2}{6}\) Probability of obtaining neither 5 or 2 = \(1 - \frac{2}{6}=\frac{4}{6}=\frac{2}{3}\) |
|
9. |
In the diagram, KL//MN, ∠LKP = 30o and ∠NMP = 45o. Find the size of the reflex ∠KPM. A. 285o B. 255o C. 225o D. 210o
Show Content
Detailed Solution= 360o - 75o = 285o |
|
10. |
In the diagram, PR is a diameter, ∠PRQ = (3x-8)o and ∠RPQ = (2y-7)o. s x in terms of y A. \(x=\frac{75-2y}{3}\) B. \(x=\frac{105-3y}{2}\) C. \(x=\frac{105-2y}{3}\) D. \(x=\frac{75-3y}{2}\)
Show Content
Detailed Solution180 = ∠RPQ + ∠PRQ + ∠PQR Since PQR = 90 (theorem: angle in a semi circle)180 = ∠RPQ + ∠PRQ + 90 => 180o = (3x-8)o+(2y-7)o+90o; 90+8+7 = 3x+2y =>\(\frac{105-2y}{3}=x\) |
Preview displays only 10 out of the 47 Questions