Year : 
1991
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

1 - 10 of 50 Questions

# Question Ans
1.

Express 0.0462 in standard form

A. 0.462 x 10-1

B. 0.462 x 10-2

C. 4.62 x 10-1

D. 4.62 x 10-2

E. 4.62 x 103

Detailed Solution

4.62 x 10-2
2.

The population of a village is 5846. Express this number to three significant figures

A. 5850

B. 5846

C. 5840

D. 585

E. 584

Detailed Solution

5846 \(\approxeq\) 5850 (to 3 s.f.)
3.

Simplify: log6 + log2 - log12

A. -4

B. -1

D. 1

E. 4

Detailed Solution

log 6 + log 2 - log 12
= \(\log (\frac{6 \times 2}{12})\)
= \(\log 1\)
= 0
4.

Find the number whose logarithm to base 10 is 2.6025

A. 400.4

B. 0.4004

C. 0.04004

D. 0.004004

E. 0.0004004

Detailed Solution

For the log to be 2.6025, there must be three digits before the decimal point.
5.

Simplify: \((\frac{1}{4})^{-1\frac{1}{2}}\)

A. 1/8

B. 1/4

C. 2

D. 4

E. 8

Detailed Solution

\((\frac{1}{4})^{-1\frac{1}{2}}\)
= \((\frac{1}{4})^{-\frac{3}{2}}\)
= \((\sqrt{\frac{1}{4}})^{-3}\)
= \((\frac{1}{2})^{-3}\)
= \(2^3\)
= 8
6.

For what value of y is the expression \(\frac{y + 2}{y^{2} - 3y - 10}\) undefined?

A. y = 0

B. y = 2

C. y = 3

D. y = 5

E. y = 10

Detailed Solution

\(\frac{y + 2}{y^2 - 3y - 10}\)
\(y^2 - 3y - 10 = 0 \implies y^2 - 5y + 2y - 10 = 0\)
\(y(y - 5) + 2(y - 5) = 0\)
\((y - 5)(y + 2) = 0\)
\(\frac{y + 2}{(y - 5)(y + 2)} = \frac{1}{y - 5}\)
\(\therefore\) At y = 5, the expression \(\frac{y + 2}{y^2 - 3y - 10}\) is undefined.
7.

Factorize 3a\(^2\) - 11a + 6

A. (3a - 2)(a - 3)

B. (2a -2)(a - 3)

C. (3a - 2)(a + 3)

D. (3a + 2)(a - 3)

E. (2a-3)(a + 2)

Detailed Solution

3a\(^2\) - 11a + 6
3a\(^2\) - 9a - 2a + 6
3a(a - 3) - 2(a - 3)
= (3a - 2)(a - 3)
8.

Solve the equation: 3a + 10 = a\(^2\)

A. a = 5 or a = 2

B. a = -5 or a = 2

C. a = 10 or a = 0

D. a = 5 or a = 0

E. a = 5 or a = -2

Detailed Solution

3a + 10 = a\(^2\)
a\(^2\) - 3a - 10 = 0
a\(^2\) - 5a + 2a - 10 = 0
a(a - 5) + 2(a - 5) = 0
(a - 5)(a + 2) = 0
a = 5 or a = -2.
9.

Simplify \((\frac{3}{x} + \frac{15}{2y}) \div \frac{6}{xy}\)

A. \(\frac{2y - 5x}{4}\)

B. \(\frac{9(2x - 5x)}{x^2y^2}\)

C. \(\frac{5x - 2y}{2}\)

D. \(\frac{c^2y^2}{18y - 45x}\)

E. \(\frac{4}{2y - 5x}\)

Detailed Solution

\((\frac{3}{x} - \frac{15}{2y}) \div \frac{6}{xy}\)
= \((\frac{6y - 15x}{2xy}) \div \frac{6}{xy}\)
= \(\frac{6y - 15x}{2xy} \times \frac{xy}{6}\)
= \(\frac{3(2y - 5x)}{2xy} \times \frac{xy}{6}\)
= \(\frac{2y - 5x}{4}\)
10.

Simplify: 1/4(2n - 2n+2)

A. 2n2 - 2n

B. 2n-2(1-2n)

C. 2n + 22n + 2

D. 22n

Detailed Solution

1/4(2n - 2n+2) = 2-2(2n - 2n x 22) = 2n x -2(1 - 22)= 22n-2
(20 - 22) = 22n-2 - 2n
1.

Express 0.0462 in standard form

A. 0.462 x 10-1

B. 0.462 x 10-2

C. 4.62 x 10-1

D. 4.62 x 10-2

E. 4.62 x 103

Detailed Solution

4.62 x 10-2
2.

The population of a village is 5846. Express this number to three significant figures

A. 5850

B. 5846

C. 5840

D. 585

E. 584

Detailed Solution

5846 \(\approxeq\) 5850 (to 3 s.f.)
3.

Simplify: log6 + log2 - log12

A. -4

B. -1

D. 1

E. 4

Detailed Solution

log 6 + log 2 - log 12
= \(\log (\frac{6 \times 2}{12})\)
= \(\log 1\)
= 0
4.

Find the number whose logarithm to base 10 is 2.6025

A. 400.4

B. 0.4004

C. 0.04004

D. 0.004004

E. 0.0004004

Detailed Solution

For the log to be 2.6025, there must be three digits before the decimal point.
5.

Simplify: \((\frac{1}{4})^{-1\frac{1}{2}}\)

A. 1/8

B. 1/4

C. 2

D. 4

E. 8

Detailed Solution

\((\frac{1}{4})^{-1\frac{1}{2}}\)
= \((\frac{1}{4})^{-\frac{3}{2}}\)
= \((\sqrt{\frac{1}{4}})^{-3}\)
= \((\frac{1}{2})^{-3}\)
= \(2^3\)
= 8
6.

For what value of y is the expression \(\frac{y + 2}{y^{2} - 3y - 10}\) undefined?

A. y = 0

B. y = 2

C. y = 3

D. y = 5

E. y = 10

Detailed Solution

\(\frac{y + 2}{y^2 - 3y - 10}\)
\(y^2 - 3y - 10 = 0 \implies y^2 - 5y + 2y - 10 = 0\)
\(y(y - 5) + 2(y - 5) = 0\)
\((y - 5)(y + 2) = 0\)
\(\frac{y + 2}{(y - 5)(y + 2)} = \frac{1}{y - 5}\)
\(\therefore\) At y = 5, the expression \(\frac{y + 2}{y^2 - 3y - 10}\) is undefined.
7.

Factorize 3a\(^2\) - 11a + 6

A. (3a - 2)(a - 3)

B. (2a -2)(a - 3)

C. (3a - 2)(a + 3)

D. (3a + 2)(a - 3)

E. (2a-3)(a + 2)

Detailed Solution

3a\(^2\) - 11a + 6
3a\(^2\) - 9a - 2a + 6
3a(a - 3) - 2(a - 3)
= (3a - 2)(a - 3)
8.

Solve the equation: 3a + 10 = a\(^2\)

A. a = 5 or a = 2

B. a = -5 or a = 2

C. a = 10 or a = 0

D. a = 5 or a = 0

E. a = 5 or a = -2

Detailed Solution

3a + 10 = a\(^2\)
a\(^2\) - 3a - 10 = 0
a\(^2\) - 5a + 2a - 10 = 0
a(a - 5) + 2(a - 5) = 0
(a - 5)(a + 2) = 0
a = 5 or a = -2.
9.

Simplify \((\frac{3}{x} + \frac{15}{2y}) \div \frac{6}{xy}\)

A. \(\frac{2y - 5x}{4}\)

B. \(\frac{9(2x - 5x)}{x^2y^2}\)

C. \(\frac{5x - 2y}{2}\)

D. \(\frac{c^2y^2}{18y - 45x}\)

E. \(\frac{4}{2y - 5x}\)

Detailed Solution

\((\frac{3}{x} - \frac{15}{2y}) \div \frac{6}{xy}\)
= \((\frac{6y - 15x}{2xy}) \div \frac{6}{xy}\)
= \(\frac{6y - 15x}{2xy} \times \frac{xy}{6}\)
= \(\frac{3(2y - 5x)}{2xy} \times \frac{xy}{6}\)
= \(\frac{2y - 5x}{4}\)
10.

Simplify: 1/4(2n - 2n+2)

A. 2n2 - 2n

B. 2n-2(1-2n)

C. 2n + 22n + 2

D. 22n

Detailed Solution

1/4(2n - 2n+2) = 2-2(2n - 2n x 22) = 2n x -2(1 - 22)= 22n-2
(20 - 22) = 22n-2 - 2n