1 - 10 of 50 Questions
# | Question | Ans |
---|---|---|
1. |
Express 0.0462 in standard form A. 0.462 x 10-1 B. 0.462 x 10-2 C. 4.62 x 10-1 D. 4.62 x 10-2 E. 4.62 x 103 Detailed Solution4.62 x 10-2 |
|
2. |
The population of a village is 5846. Express this number to three significant figures A. 5850 B. 5846 C. 5840 D. 585 E. 584 Detailed Solution5846 \(\approxeq\) 5850 (to 3 s.f.) |
|
3. |
Simplify: log6 + log2 - log12 A. -4 B. -1 D. 1 E. 4 Detailed Solutionlog 6 + log 2 - log 12= \(\log (\frac{6 \times 2}{12})\) = \(\log 1\) = 0 |
|
4. |
Find the number whose logarithm to base 10 is 2.6025 A. 400.4 B. 0.4004 C. 0.04004 D. 0.004004 E. 0.0004004 Detailed SolutionFor the log to be 2.6025, there must be three digits before the decimal point. |
|
5. |
Simplify: \((\frac{1}{4})^{-1\frac{1}{2}}\) A. 1/8 B. 1/4 C. 2 D. 4 E. 8 Detailed Solution\((\frac{1}{4})^{-1\frac{1}{2}}\)= \((\frac{1}{4})^{-\frac{3}{2}}\) = \((\sqrt{\frac{1}{4}})^{-3}\) = \((\frac{1}{2})^{-3}\) = \(2^3\) = 8 |
|
6. |
For what value of y is the expression \(\frac{y + 2}{y^{2} - 3y - 10}\) undefined? A. y = 0 B. y = 2 C. y = 3 D. y = 5 E. y = 10 Detailed Solution\(\frac{y + 2}{y^2 - 3y - 10}\)\(y^2 - 3y - 10 = 0 \implies y^2 - 5y + 2y - 10 = 0\) \(y(y - 5) + 2(y - 5) = 0\) \((y - 5)(y + 2) = 0\) \(\frac{y + 2}{(y - 5)(y + 2)} = \frac{1}{y - 5}\) \(\therefore\) At y = 5, the expression \(\frac{y + 2}{y^2 - 3y - 10}\) is undefined. |
|
7. |
Factorize 3a\(^2\) - 11a + 6 A. (3a - 2)(a - 3) B. (2a -2)(a - 3) C. (3a - 2)(a + 3) D. (3a + 2)(a - 3) E. (2a-3)(a + 2) Detailed Solution3a\(^2\) - 11a + 63a\(^2\) - 9a - 2a + 6 3a(a - 3) - 2(a - 3) = (3a - 2)(a - 3) |
|
8. |
Solve the equation: 3a + 10 = a\(^2\) A. a = 5 or a = 2 B. a = -5 or a = 2 C. a = 10 or a = 0 D. a = 5 or a = 0 E. a = 5 or a = -2 Detailed Solution3a + 10 = a\(^2\)a\(^2\) - 3a - 10 = 0 a\(^2\) - 5a + 2a - 10 = 0 a(a - 5) + 2(a - 5) = 0 (a - 5)(a + 2) = 0 a = 5 or a = -2. |
|
9. |
Simplify \((\frac{3}{x} + \frac{15}{2y}) \div \frac{6}{xy}\) A. \(\frac{2y - 5x}{4}\) B. \(\frac{9(2x - 5x)}{x^2y^2}\) C. \(\frac{5x - 2y}{2}\) D. \(\frac{c^2y^2}{18y - 45x}\) E. \(\frac{4}{2y - 5x}\) Detailed Solution\((\frac{3}{x} - \frac{15}{2y}) \div \frac{6}{xy}\)= \((\frac{6y - 15x}{2xy}) \div \frac{6}{xy}\) = \(\frac{6y - 15x}{2xy} \times \frac{xy}{6}\) = \(\frac{3(2y - 5x)}{2xy} \times \frac{xy}{6}\) = \(\frac{2y - 5x}{4}\) |
|
10. |
Simplify: 1/4(2n - 2n+2) A. 2n2 - 2n B. 2n-2(1-2n) C. 2n + 22n + 2 D. 22n Detailed Solution1/4(2n - 2n+2) = 2-2(2n - 2n x 22) = 2n x -2(1 - 22)= 22n-2(20 - 22) = 22n-2 - 2n |
1. |
Express 0.0462 in standard form A. 0.462 x 10-1 B. 0.462 x 10-2 C. 4.62 x 10-1 D. 4.62 x 10-2 E. 4.62 x 103 Detailed Solution4.62 x 10-2 |
|
2. |
The population of a village is 5846. Express this number to three significant figures A. 5850 B. 5846 C. 5840 D. 585 E. 584 Detailed Solution5846 \(\approxeq\) 5850 (to 3 s.f.) |
|
3. |
Simplify: log6 + log2 - log12 A. -4 B. -1 D. 1 E. 4 Detailed Solutionlog 6 + log 2 - log 12= \(\log (\frac{6 \times 2}{12})\) = \(\log 1\) = 0 |
|
4. |
Find the number whose logarithm to base 10 is 2.6025 A. 400.4 B. 0.4004 C. 0.04004 D. 0.004004 E. 0.0004004 Detailed SolutionFor the log to be 2.6025, there must be three digits before the decimal point. |
|
5. |
Simplify: \((\frac{1}{4})^{-1\frac{1}{2}}\) A. 1/8 B. 1/4 C. 2 D. 4 E. 8 Detailed Solution\((\frac{1}{4})^{-1\frac{1}{2}}\)= \((\frac{1}{4})^{-\frac{3}{2}}\) = \((\sqrt{\frac{1}{4}})^{-3}\) = \((\frac{1}{2})^{-3}\) = \(2^3\) = 8 |
6. |
For what value of y is the expression \(\frac{y + 2}{y^{2} - 3y - 10}\) undefined? A. y = 0 B. y = 2 C. y = 3 D. y = 5 E. y = 10 Detailed Solution\(\frac{y + 2}{y^2 - 3y - 10}\)\(y^2 - 3y - 10 = 0 \implies y^2 - 5y + 2y - 10 = 0\) \(y(y - 5) + 2(y - 5) = 0\) \((y - 5)(y + 2) = 0\) \(\frac{y + 2}{(y - 5)(y + 2)} = \frac{1}{y - 5}\) \(\therefore\) At y = 5, the expression \(\frac{y + 2}{y^2 - 3y - 10}\) is undefined. |
|
7. |
Factorize 3a\(^2\) - 11a + 6 A. (3a - 2)(a - 3) B. (2a -2)(a - 3) C. (3a - 2)(a + 3) D. (3a + 2)(a - 3) E. (2a-3)(a + 2) Detailed Solution3a\(^2\) - 11a + 63a\(^2\) - 9a - 2a + 6 3a(a - 3) - 2(a - 3) = (3a - 2)(a - 3) |
|
8. |
Solve the equation: 3a + 10 = a\(^2\) A. a = 5 or a = 2 B. a = -5 or a = 2 C. a = 10 or a = 0 D. a = 5 or a = 0 E. a = 5 or a = -2 Detailed Solution3a + 10 = a\(^2\)a\(^2\) - 3a - 10 = 0 a\(^2\) - 5a + 2a - 10 = 0 a(a - 5) + 2(a - 5) = 0 (a - 5)(a + 2) = 0 a = 5 or a = -2. |
|
9. |
Simplify \((\frac{3}{x} + \frac{15}{2y}) \div \frac{6}{xy}\) A. \(\frac{2y - 5x}{4}\) B. \(\frac{9(2x - 5x)}{x^2y^2}\) C. \(\frac{5x - 2y}{2}\) D. \(\frac{c^2y^2}{18y - 45x}\) E. \(\frac{4}{2y - 5x}\) Detailed Solution\((\frac{3}{x} - \frac{15}{2y}) \div \frac{6}{xy}\)= \((\frac{6y - 15x}{2xy}) \div \frac{6}{xy}\) = \(\frac{6y - 15x}{2xy} \times \frac{xy}{6}\) = \(\frac{3(2y - 5x)}{2xy} \times \frac{xy}{6}\) = \(\frac{2y - 5x}{4}\) |
|
10. |
Simplify: 1/4(2n - 2n+2) A. 2n2 - 2n B. 2n-2(1-2n) C. 2n + 22n + 2 D. 22n Detailed Solution1/4(2n - 2n+2) = 2-2(2n - 2n x 22) = 2n x -2(1 - 22)= 22n-2(20 - 22) = 22n-2 - 2n |