Year : 
2005
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

1 - 10 of 47 Questions

# Question Ans
1.

Correct 0.04945 to two significant figures

A. 0.040

B. 0.049

C. 0.050

D. 0.49

Detailed Solution

0.04945 \(\approxeq\) 0.049. (to 2 sig. figs)
2.

Simplify \(\frac{5}{\sqrt{3}}-\frac{3}{\sqrt{2}}\)

A. \(\frac{1}{6}(5\sqrt{3}-3\sqrt{2}\)

B. \(\frac{1}{6}(15\sqrt{3}-6\sqrt{2}\)

C. \(\frac{1}{6}(3\sqrt{2}-\sqrt{3}\)

D. \(\frac{1}{6}(10\sqrt{3}-9\sqrt{2}\)

Detailed Solution

\(\frac{5}{\sqrt{3}}-\frac{3}{\sqrt{2}}=\frac{5\sqrt{2}-3\sqrt{3}}{\sqrt{6}}\\
=\frac{5\sqrt{2}-3\sqrt{3}}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}Rationalize\\
\frac{\sqrt{6}(5\sqrt{2}-3\sqrt{3})}{6}\\
\frac{5\sqrt{12}-3\sqrt{18}}{6}=\frac{10\sqrt{3}-9\sqrt{2}}{6}\\
\frac{1}{6}(10\sqrt{3}-9\sqrt{2})\)
3.

Evaluate, correct to the nearest whole number \(7\frac{1}{2}-\left(2\frac{1}{2}+3\right)\div\frac{33}{2}\)

A. 33

B. 8

C. 7

D. o

Detailed Solution

\(7\frac{1}{2}-\left(2\frac{1}{2}+3\right)\div\frac{33}{2}\\
=\frac{15}{2}-\left(\frac{5}{2}+\frac{3}{1}\right)\times\frac{2}{33}\\
=\frac{15}{2}-\left(\frac{5+6}{2}\right)\times \frac{2}{33}=\frac{15}{2}-\frac{11}{2}\times \frac{2}{33}=\frac{15}{2}-\frac{1}{3}\\
=\frac{45-2}{6}=\frac{43}{6}\)
4.

Simplify the expression \(log_{10}18 - log_{10}2.88+log_{10}16\)

A. 31.12

B. 3.112

C. 2

D. 1

Detailed Solution

\(log_{10}18 - log_{10}2.88+log_{10}16\\
=log_{10}18 - log_{10}\left(\frac{288}{100}\right)+log_{10}16 = log_{10}\left(\frac{18\times 16}{1}\times \frac{100}{288}\right)\\
=log_{10}\left(\frac{288\times 100}{288}\right)=log_{10}100=log_{10}10^2=2log_{10}10=2\)
5.

Find the equation whose roots are 2 and \(-3\frac{1}{2}\)

A. 2x2 + 3x + 14 = 0

B. 2x2 + 5x + 7 = 0

C. 2x2 + 5x - 7 = 0

D. 2x2 + 3x - 14 = 0

Detailed Solution

x2 (sum of roots)x + (product of roots) = 0
Sum of roots \(2+-3\frac{1}{2} = -1\frac{1}{2}=-\frac{1}{2}\)
Product of roots \(=2 \times -3\frac{1}{2}=-7\\
x^2-\left(\frac{-3}{2}\right)x+(-7)=0\Rightarrow 2x^2 + 3x - 14 = 0\)
6.

A man bought 220 mangoes at N5x. He sold each for 3x kobo and made a gain of N8. Find the value of x

A. 2

B. 5

C. 6

D. 10

Detailed Solution

The cost price of the whole mangoes = N5x
The sold amount of the mangoes = 3x * 220 = N6.60x
The gain made on mangoes = N6.60x - N5x = N8.00 => N1.60x = N8 => \(x=\frac{8}{1.60}=\frac{1}{0.2}=\frac{10}{2}=5\)
7.

From a point P, R is 5km due west and 12km due south. Find the distance between P and R

A. 5km

B. 12km

C. 13km

D. 17km

Detailed Solution

Using Pythagoras theorem
\(|PR|^2=|PO|^2+|OR|^2\\
|PR|^2=5^2+12^2\\
|PR|=\sqrt{25+144}=\sqrt{169}=13km\)
8.

A fair die is tossed once, what is the probability of obtaining neither 5 or 2

A. \(\frac{5}{6}\)

B. \(\frac{2}{3}\)

C. \(\frac{1}{2}\)

D. \(\frac{1}{6}\)

Detailed Solution

Probability of obtaining a 5 is P(5)=\(\frac{1}{6}\)
Probability of obtaining a 2 is P(2)=\(\frac{1}{6}\)
Probability of obatining either 2 or 5 = P(2∪5) = \(\frac{2}{6}\)
Probability of obtaining neither 5 or 2 = \(1 - \frac{2}{6}=\frac{4}{6}=\frac{2}{3}\)
9.

In the diagram, KL//MN, ∠LKP = 30o and ∠NMP = 45o. Find the size of the reflex ∠KPM.

A. 285o

B. 255o

C. 225o

D. 210o

Detailed Solution

∠KPM = 360o - (30 + 45)o
= 360o - 75o = 285o
10.

In the diagram, PR is a diameter, ∠PRQ = (3x-8)o and ∠RPQ = (2y-7)o. s x in terms of y

A. \(x=\frac{75-2y}{3}\)

B. \(x=\frac{105-3y}{2}\)

C. \(x=\frac{105-2y}{3}\)

D. \(x=\frac{75-3y}{2}\)

Detailed Solution

180 = ∠RPQ + ∠PRQ + ∠PQR Since PQR = 90 (theorem: angle in a semi circle)
180 = ∠RPQ + ∠PRQ + 90 => 180o = (3x-8)o+(2y-7)o+90o; 90+8+7 = 3x+2y =>\(\frac{105-2y}{3}=x\)
1.

Correct 0.04945 to two significant figures

A. 0.040

B. 0.049

C. 0.050

D. 0.49

Detailed Solution

0.04945 \(\approxeq\) 0.049. (to 2 sig. figs)
2.

Simplify \(\frac{5}{\sqrt{3}}-\frac{3}{\sqrt{2}}\)

A. \(\frac{1}{6}(5\sqrt{3}-3\sqrt{2}\)

B. \(\frac{1}{6}(15\sqrt{3}-6\sqrt{2}\)

C. \(\frac{1}{6}(3\sqrt{2}-\sqrt{3}\)

D. \(\frac{1}{6}(10\sqrt{3}-9\sqrt{2}\)

Detailed Solution

\(\frac{5}{\sqrt{3}}-\frac{3}{\sqrt{2}}=\frac{5\sqrt{2}-3\sqrt{3}}{\sqrt{6}}\\
=\frac{5\sqrt{2}-3\sqrt{3}}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}Rationalize\\
\frac{\sqrt{6}(5\sqrt{2}-3\sqrt{3})}{6}\\
\frac{5\sqrt{12}-3\sqrt{18}}{6}=\frac{10\sqrt{3}-9\sqrt{2}}{6}\\
\frac{1}{6}(10\sqrt{3}-9\sqrt{2})\)
3.

Evaluate, correct to the nearest whole number \(7\frac{1}{2}-\left(2\frac{1}{2}+3\right)\div\frac{33}{2}\)

A. 33

B. 8

C. 7

D. o

Detailed Solution

\(7\frac{1}{2}-\left(2\frac{1}{2}+3\right)\div\frac{33}{2}\\
=\frac{15}{2}-\left(\frac{5}{2}+\frac{3}{1}\right)\times\frac{2}{33}\\
=\frac{15}{2}-\left(\frac{5+6}{2}\right)\times \frac{2}{33}=\frac{15}{2}-\frac{11}{2}\times \frac{2}{33}=\frac{15}{2}-\frac{1}{3}\\
=\frac{45-2}{6}=\frac{43}{6}\)
4.

Simplify the expression \(log_{10}18 - log_{10}2.88+log_{10}16\)

A. 31.12

B. 3.112

C. 2

D. 1

Detailed Solution

\(log_{10}18 - log_{10}2.88+log_{10}16\\
=log_{10}18 - log_{10}\left(\frac{288}{100}\right)+log_{10}16 = log_{10}\left(\frac{18\times 16}{1}\times \frac{100}{288}\right)\\
=log_{10}\left(\frac{288\times 100}{288}\right)=log_{10}100=log_{10}10^2=2log_{10}10=2\)
5.

Find the equation whose roots are 2 and \(-3\frac{1}{2}\)

A. 2x2 + 3x + 14 = 0

B. 2x2 + 5x + 7 = 0

C. 2x2 + 5x - 7 = 0

D. 2x2 + 3x - 14 = 0

Detailed Solution

x2 (sum of roots)x + (product of roots) = 0
Sum of roots \(2+-3\frac{1}{2} = -1\frac{1}{2}=-\frac{1}{2}\)
Product of roots \(=2 \times -3\frac{1}{2}=-7\\
x^2-\left(\frac{-3}{2}\right)x+(-7)=0\Rightarrow 2x^2 + 3x - 14 = 0\)
6.

A man bought 220 mangoes at N5x. He sold each for 3x kobo and made a gain of N8. Find the value of x

A. 2

B. 5

C. 6

D. 10

Detailed Solution

The cost price of the whole mangoes = N5x
The sold amount of the mangoes = 3x * 220 = N6.60x
The gain made on mangoes = N6.60x - N5x = N8.00 => N1.60x = N8 => \(x=\frac{8}{1.60}=\frac{1}{0.2}=\frac{10}{2}=5\)
7.

From a point P, R is 5km due west and 12km due south. Find the distance between P and R

A. 5km

B. 12km

C. 13km

D. 17km

Detailed Solution

Using Pythagoras theorem
\(|PR|^2=|PO|^2+|OR|^2\\
|PR|^2=5^2+12^2\\
|PR|=\sqrt{25+144}=\sqrt{169}=13km\)
8.

A fair die is tossed once, what is the probability of obtaining neither 5 or 2

A. \(\frac{5}{6}\)

B. \(\frac{2}{3}\)

C. \(\frac{1}{2}\)

D. \(\frac{1}{6}\)

Detailed Solution

Probability of obtaining a 5 is P(5)=\(\frac{1}{6}\)
Probability of obtaining a 2 is P(2)=\(\frac{1}{6}\)
Probability of obatining either 2 or 5 = P(2∪5) = \(\frac{2}{6}\)
Probability of obtaining neither 5 or 2 = \(1 - \frac{2}{6}=\frac{4}{6}=\frac{2}{3}\)
9.

In the diagram, KL//MN, ∠LKP = 30o and ∠NMP = 45o. Find the size of the reflex ∠KPM.

A. 285o

B. 255o

C. 225o

D. 210o

Detailed Solution

∠KPM = 360o - (30 + 45)o
= 360o - 75o = 285o
10.

In the diagram, PR is a diameter, ∠PRQ = (3x-8)o and ∠RPQ = (2y-7)o. s x in terms of y

A. \(x=\frac{75-2y}{3}\)

B. \(x=\frac{105-3y}{2}\)

C. \(x=\frac{105-2y}{3}\)

D. \(x=\frac{75-3y}{2}\)

Detailed Solution

180 = ∠RPQ + ∠PRQ + ∠PQR Since PQR = 90 (theorem: angle in a semi circle)
180 = ∠RPQ + ∠PRQ + 90 => 180o = (3x-8)o+(2y-7)o+90o; 90+8+7 = 3x+2y =>\(\frac{105-2y}{3}=x\)