Year : 
2003
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

1 - 10 of 45 Questions

# Question Ans
1.

Evaluate \(log_{\sqrt{2}}4+log_{\frac{1}{2}}16-log_{4}32\)

A. -5.5

B. -2.5

C. 2.5

D. 5.5

Detailed Solution

Note that if we set \(log_{\sqrt{2}}4 = x_{1}, \hspace{1mm}solving\hspace{1mm}gives\hspace{1mm}x_{1}=4\\if\hspace{1mm}log_{\frac{1}{2}}16 = x_{2}, \Rightarrow x_{2} = -4\\Also \hspace{1mm}for\hspace{1mm}log_{4}32 = x_{3} = 2.5\\Combining\hspace{1mm}results,\hspace{1mm}x_{1}+x_{2}+x_{3} = 4+(-4)-2.5=-2.5\)
Note that the solution has been separated to simplify solving difficulty due to different bases.
2.

Simplify 213\(_4\) x 23\(_4\)

A. 103114

B. 103214

C. 122314

D. 132114

Detailed Solution

You can either multiply directly in base 4 or you can decide to convert to base 10 and do the multiplication and re-convert.
3.

In a class of 40 students, 32 offer mathematics, 24 offer Physics, and 4 offer neither Mathematics nor Physics. How many offer both Mat
ematics and Physics?

A. 20

B. 16

C. 8

D. 4

Detailed Solution

Using a venn diagram, let x = number who offer both Maths and Physics. So that (32-x) offer Maths and another (24-x) offer Physics.
(32-x) + (24-x) + (x) + (4 who offer neither) = 40
=> 60 - x = 40
=> -x = -20
Therefore x = 20.
4.

Find (\(\frac{1}{0.06} \div \frac{1}{0.042}\))-1

A. 1.43

B. 1.53

C. 3.14

D. 4.42

Detailed Solution

\((\frac{1}{0.06} \div \frac{1}{0.042})^{-1}\)
= \((\frac{100}{6} \div \frac{1000}{42})^{-1}\)
= \((\frac{100}{6} \times \frac{42}{1000})^{-1}\)
= \((\frac{7}{10})^{-1}\)
= \(\frac{10}{7}\)
= 1.4285 \(\approxeq\) 1.43.
5.

A woman buys 270 oranges for N1800.00 and sells at 5 for N40.00. What is her profit?

A. N2,160.00

B. N1, 620.00

C. N630.00

D. N360.00

Detailed Solution

C.P = N1800
S.P = (270/5) x 40 = N2160.00
Profit = S.P - C.P = N2160 - N1800 = N360.00
6.

Simplify 1 - (7/3 x 5/4) + 3/5

A. -16/15

B. -79/60

C. -37/15

D. -151/60

Detailed Solution

\(1 - (\frac{7}{3} \times \frac{5}{4}) + \frac{3}{5}\)
= \(1 - \frac{35}{12} + \frac{3}{5}\)
= \(\frac{60 - 175 + 36}{60}\)
= \(\frac{-79}{60}\)
7.

Simplify (√98 -√50)/√32

A. 3

B. 1

C. 1/2

D. 1/4

Detailed Solution

(√98 - √50)/√32 = √(49x2) - √(25x2) √(16x2)
=> (7√2 - 5√2)/4√2 = 1/2
8.

A cinema hall contains a certain number of people. If 22\(\frac{1}{2}\)% are children, 47\(\frac{1}{2}\)% are men and 84 are women, find the number of men in the hall.

A. 63

B. 84

C. 113

D. 133

Detailed Solution

45/2% + 95/2% = 70%
100% - 70% = 30% (i.e women)
=> 30% = 84
1% = 84/30
95/2% = (84/30 x 95/2) = 133.
9.

If \(\frac{9^{2x-1}}{27^{x+1}} = 1\), find the value of x.

A. 8

B. 5

C. 3

D. 2

Detailed Solution

\(\frac{9^{2x - 1}}{27^{x + 1}} = 1\)
\(\implies 9^{2x - 1} = 27^{x + 1}\)
\((3^{2})^{2x - 1} = (3^{3})^{x + 1}\)
\(2(2x - 1) = 3(x + 1) \implies 4x - 2 = 3x + 3\)
\(4x - 3x = 3 + 2 \implies x = 5\)
10.

The sum of four numbers is 1214\(_5\). What is the average expressed in base five?

A. 114

B. 141

C. 401

D. 411

Detailed Solution

Convert to base 10, divide and then re-convert to base 5.
1.

Evaluate \(log_{\sqrt{2}}4+log_{\frac{1}{2}}16-log_{4}32\)

A. -5.5

B. -2.5

C. 2.5

D. 5.5

Detailed Solution

Note that if we set \(log_{\sqrt{2}}4 = x_{1}, \hspace{1mm}solving\hspace{1mm}gives\hspace{1mm}x_{1}=4\\if\hspace{1mm}log_{\frac{1}{2}}16 = x_{2}, \Rightarrow x_{2} = -4\\Also \hspace{1mm}for\hspace{1mm}log_{4}32 = x_{3} = 2.5\\Combining\hspace{1mm}results,\hspace{1mm}x_{1}+x_{2}+x_{3} = 4+(-4)-2.5=-2.5\)
Note that the solution has been separated to simplify solving difficulty due to different bases.
2.

Simplify 213\(_4\) x 23\(_4\)

A. 103114

B. 103214

C. 122314

D. 132114

Detailed Solution

You can either multiply directly in base 4 or you can decide to convert to base 10 and do the multiplication and re-convert.
3.

In a class of 40 students, 32 offer mathematics, 24 offer Physics, and 4 offer neither Mathematics nor Physics. How many offer both Mat
ematics and Physics?

A. 20

B. 16

C. 8

D. 4

Detailed Solution

Using a venn diagram, let x = number who offer both Maths and Physics. So that (32-x) offer Maths and another (24-x) offer Physics.
(32-x) + (24-x) + (x) + (4 who offer neither) = 40
=> 60 - x = 40
=> -x = -20
Therefore x = 20.
4.

Find (\(\frac{1}{0.06} \div \frac{1}{0.042}\))-1

A. 1.43

B. 1.53

C. 3.14

D. 4.42

Detailed Solution

\((\frac{1}{0.06} \div \frac{1}{0.042})^{-1}\)
= \((\frac{100}{6} \div \frac{1000}{42})^{-1}\)
= \((\frac{100}{6} \times \frac{42}{1000})^{-1}\)
= \((\frac{7}{10})^{-1}\)
= \(\frac{10}{7}\)
= 1.4285 \(\approxeq\) 1.43.
5.

A woman buys 270 oranges for N1800.00 and sells at 5 for N40.00. What is her profit?

A. N2,160.00

B. N1, 620.00

C. N630.00

D. N360.00

Detailed Solution

C.P = N1800
S.P = (270/5) x 40 = N2160.00
Profit = S.P - C.P = N2160 - N1800 = N360.00
6.

Simplify 1 - (7/3 x 5/4) + 3/5

A. -16/15

B. -79/60

C. -37/15

D. -151/60

Detailed Solution

\(1 - (\frac{7}{3} \times \frac{5}{4}) + \frac{3}{5}\)
= \(1 - \frac{35}{12} + \frac{3}{5}\)
= \(\frac{60 - 175 + 36}{60}\)
= \(\frac{-79}{60}\)
7.

Simplify (√98 -√50)/√32

A. 3

B. 1

C. 1/2

D. 1/4

Detailed Solution

(√98 - √50)/√32 = √(49x2) - √(25x2) √(16x2)
=> (7√2 - 5√2)/4√2 = 1/2
8.

A cinema hall contains a certain number of people. If 22\(\frac{1}{2}\)% are children, 47\(\frac{1}{2}\)% are men and 84 are women, find the number of men in the hall.

A. 63

B. 84

C. 113

D. 133

Detailed Solution

45/2% + 95/2% = 70%
100% - 70% = 30% (i.e women)
=> 30% = 84
1% = 84/30
95/2% = (84/30 x 95/2) = 133.
9.

If \(\frac{9^{2x-1}}{27^{x+1}} = 1\), find the value of x.

A. 8

B. 5

C. 3

D. 2

Detailed Solution

\(\frac{9^{2x - 1}}{27^{x + 1}} = 1\)
\(\implies 9^{2x - 1} = 27^{x + 1}\)
\((3^{2})^{2x - 1} = (3^{3})^{x + 1}\)
\(2(2x - 1) = 3(x + 1) \implies 4x - 2 = 3x + 3\)
\(4x - 3x = 3 + 2 \implies x = 5\)
10.

The sum of four numbers is 1214\(_5\). What is the average expressed in base five?

A. 114

B. 141

C. 401

D. 411

Detailed Solution

Convert to base 10, divide and then re-convert to base 5.