Year : 
2003
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 45 Questions

# Question Ans
21.

A trapezium has two parallel sides of length 5cm and 9cm. If the area is 21cm2, find the distance between the parallel sides

A. 3 cm

B. 4 cm

C. 6 cm

D. 7 cm

Detailed Solution

Area of Trapezium = 1/2(sum of parralel sides) * ht
21 = 1/2(5 + 9)h
42 = 14h
h = 42/14
h = 3cm
22.

The locus of a point P which moves on one side only of a straight line XY so that ∠XPY = 90o is

A. a circle

B. a semicircle

C. an arc of a circle through X, Y

D. the perpendicular bisector of XY

B

23.

Find the slope of the curve y = 2x\(^2\) + 5x - 3 at (1, 4).

A. 4

B. 6

C. 7

D. 9

Detailed Solution

y = 2x\(^2\) + 5x - 3
dy/dx = 4x + 5
= 4 + 5
= 9
24.

Evaluate \(\int^{2} _{3}(x^2 - 2x)dx\)

A. 4

B. 2

C. 4/3

D. 1/3

Detailed Solution

\(\int^{2} _{3}(x^2 - 2x)dx\\=\left[\frac{x^3}{3}-\frac{2x^2}{2}\right ]^{2}_{3}\\\left[\frac{x^3}{3}-x^2 + C\right ]^{2}_{3}\\\left[\frac{3^3}{3}-3^2 + C \right ]-\left[\frac{2^3}{3}-2^2 + C \right ]\\9-9-\left[\frac{8}{3}-4 \right ]\\=\frac{-8}{3}+4\\=\frac{4}{3}\)
25.

If y = 3 sin(-4x), dy/dx is

A. 12x cos (4x)

B. -12x cos (-4x)

C. -12 cos (-4x)

D. 12 sin (-4x)

Detailed Solution

y = 3 sin(-4x)
dy/dx = 3 x - 4 cos (-4x)
= -12 cos (-4x)
26.

Determine the maximum value of y = 3x2 - x3

A. zero

B. 2

C. 4

D. 6

Detailed Solution

y = 3x2 - x3
dy/dx = 6x - 3x2
as dy/dx = 0
6x - 3x2 = 0
3x (2 - x) = 0
this implies that 2 -x = 0 and 3x = 0
x = 2 (or) 0
But = dy/dx = 6x - 3x2
d2y/dx2 = 6 - 6x at x = 2
= 6 - 6(2)
= -6
y = 3x2 - x3
= 3(2)2 - 23
= 12 - 8
= 4
27.

By how much is the mean of 30, 56, 31, 55, 43 and 44 less than the median?

A. 0.75

B. 0.50

C. 0.33

D. 0.17

Detailed Solution

\(Mean = \frac{30+56+31+55+43+44}{6}\\=\frac{259}{6}=43.167\\Median = 30,31,43,44,55,56\\=\frac{43+44}{2}=\frac{87}{2}=43.5\\Median-mean = 43.5-43.17=0.33\)
28.

The range of 4, 3, 11, 9, 6, 15, 19, 23, 27, 24,21 and 16 is

A. 16

B. 21

C. 23

D. 24

Detailed Solution

Range = (Highest - Lowest) items
= 27 - 3
= 24
29.

Find the mean of the distribution above

A. 1

B. 2

C. 3

D. 4

Detailed Solution

\(Mean = \frac{(0 \times 1) + (1 \times 2) + (2 \times 2) + (3 \times 1) + (4 \times 9)}{1 + 2 + 2 + 1 + 9}\\=\frac{(0 + 2 + 4 + 3 + 36)}{15}\\=\frac{45}{15}=3\)
30.

On a pie chart, there are four sectors of which three angles are 45°, 90° and 135°. If the smallest sector represents N28.00, how much is the largest sector?

A. N96.00

B. N84.00

C. N48.00

D. N42.00

Detailed Solution

Let the 4th angle be = x
∴ x + 45 + 90 + 135 = 360
x + 270 = 360
x = 360 - 270
x = 90
∴ smallest angle = 45o
45o = N28.00
1o = 28.00/45
135o = (28.00/45) * (135/1)
= N84.00
21.

A trapezium has two parallel sides of length 5cm and 9cm. If the area is 21cm2, find the distance between the parallel sides

A. 3 cm

B. 4 cm

C. 6 cm

D. 7 cm

Detailed Solution

Area of Trapezium = 1/2(sum of parralel sides) * ht
21 = 1/2(5 + 9)h
42 = 14h
h = 42/14
h = 3cm
22.

The locus of a point P which moves on one side only of a straight line XY so that ∠XPY = 90o is

A. a circle

B. a semicircle

C. an arc of a circle through X, Y

D. the perpendicular bisector of XY

B

23.

Find the slope of the curve y = 2x\(^2\) + 5x - 3 at (1, 4).

A. 4

B. 6

C. 7

D. 9

Detailed Solution

y = 2x\(^2\) + 5x - 3
dy/dx = 4x + 5
= 4 + 5
= 9
24.

Evaluate \(\int^{2} _{3}(x^2 - 2x)dx\)

A. 4

B. 2

C. 4/3

D. 1/3

Detailed Solution

\(\int^{2} _{3}(x^2 - 2x)dx\\=\left[\frac{x^3}{3}-\frac{2x^2}{2}\right ]^{2}_{3}\\\left[\frac{x^3}{3}-x^2 + C\right ]^{2}_{3}\\\left[\frac{3^3}{3}-3^2 + C \right ]-\left[\frac{2^3}{3}-2^2 + C \right ]\\9-9-\left[\frac{8}{3}-4 \right ]\\=\frac{-8}{3}+4\\=\frac{4}{3}\)
25.

If y = 3 sin(-4x), dy/dx is

A. 12x cos (4x)

B. -12x cos (-4x)

C. -12 cos (-4x)

D. 12 sin (-4x)

Detailed Solution

y = 3 sin(-4x)
dy/dx = 3 x - 4 cos (-4x)
= -12 cos (-4x)
26.

Determine the maximum value of y = 3x2 - x3

A. zero

B. 2

C. 4

D. 6

Detailed Solution

y = 3x2 - x3
dy/dx = 6x - 3x2
as dy/dx = 0
6x - 3x2 = 0
3x (2 - x) = 0
this implies that 2 -x = 0 and 3x = 0
x = 2 (or) 0
But = dy/dx = 6x - 3x2
d2y/dx2 = 6 - 6x at x = 2
= 6 - 6(2)
= -6
y = 3x2 - x3
= 3(2)2 - 23
= 12 - 8
= 4
27.

By how much is the mean of 30, 56, 31, 55, 43 and 44 less than the median?

A. 0.75

B. 0.50

C. 0.33

D. 0.17

Detailed Solution

\(Mean = \frac{30+56+31+55+43+44}{6}\\=\frac{259}{6}=43.167\\Median = 30,31,43,44,55,56\\=\frac{43+44}{2}=\frac{87}{2}=43.5\\Median-mean = 43.5-43.17=0.33\)
28.

The range of 4, 3, 11, 9, 6, 15, 19, 23, 27, 24,21 and 16 is

A. 16

B. 21

C. 23

D. 24

Detailed Solution

Range = (Highest - Lowest) items
= 27 - 3
= 24
29.

Find the mean of the distribution above

A. 1

B. 2

C. 3

D. 4

Detailed Solution

\(Mean = \frac{(0 \times 1) + (1 \times 2) + (2 \times 2) + (3 \times 1) + (4 \times 9)}{1 + 2 + 2 + 1 + 9}\\=\frac{(0 + 2 + 4 + 3 + 36)}{15}\\=\frac{45}{15}=3\)
30.

On a pie chart, there are four sectors of which three angles are 45°, 90° and 135°. If the smallest sector represents N28.00, how much is the largest sector?

A. N96.00

B. N84.00

C. N48.00

D. N42.00

Detailed Solution

Let the 4th angle be = x
∴ x + 45 + 90 + 135 = 360
x + 270 = 360
x = 360 - 270
x = 90
∴ smallest angle = 45o
45o = N28.00
1o = 28.00/45
135o = (28.00/45) * (135/1)
= N84.00