Year : 
2003
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 45 Questions

# Question Ans
11.

Given:
U = {Even numbers between 0 and 30}
P = {Multiples of 6 between 0 and 30}
Q = {Multiples of 4 between 0 and 30}
Find (P∪Q)c

A. {2, 10, 14, 22, 26}

B. {0, 10, 14, 22, 26}

C. {2,4, 14, 18, 26}

D. {0, 2, 6, 22, 26}

Detailed Solution

U = {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30}
P = {6,12,18,24,30}
Q = {4,8,12,16,20,24,28}
P∪Q = {4,6,8,12,16,18,20,24,28,30}
(P∪Q)c = {2,10,14,22,26}
12.

X varies directly as the product of u and v and inversely as their sum. If x = 3 when u = 3 and v = 1, what is the value of x if u = 3 and v = 3?

A. 3

B. 4

C. 6

D. 9

Detailed Solution

\(x\propto \frac{uv}{u+v}\\x = \frac{kuv}{u+v}\\K = \frac{x(u+v)}{uv}\\\frac{3(3+1)}{3\times1}\\\frac{3\times4}{3}\\k = 4\\x=\frac{4uv}{u+v}\\x=\frac{4\times 3\times3}{3+3}\\x=\frac{36}{6}\\x=6\)
13.

Find the range of the value of x satisfying the inequalities 5 + x \(\leq\) 8 and 13 + x \(\geq\) 7

A. -3 \(\leq\) x \(\leq\) 3

B. 3 \(\leq\) x \(\leq\) 6

C. -6 \(\leq\) x \(\leq\) 3

D. -6 \(\leq\) x \(\leq\) -3

Detailed Solution

5 + x \(\leq\) 8 and 13 + x \(\geq\) 7
5 + x \(\leq\) 8
X \(\leq\) 8 – 5
X \(\leq\) 3
And 13 + x \(\geq\) 7
X \(\geq\) 7 – 15
X \(\geq\) -7
Combining the two together
-6 \(\leq\) x \(\leq\) 3
14.

The graph of the function y = x\(^2\) + 4 and a straight line PQ are drawn to solve the equation x\(^2\) - 3x + 2 = 0. What is the equation of PQ?

A. y = 3x - 2

B. y = 3x + 2

C. y = 3x - 4

D. y = 3x + 4

Detailed Solution

x\(^2\) + 4 = x\(^2\) - 3x + 2
3x + 2 = y
15.

The length a person can jump is inversely proportional to his weight. If a 20 kg person can jump 1.5 m, find the constant of proportionality

A. 60

B. 30

C. 20

D. 15

Detailed Solution

L ∝ 1/W
L = K/W
K = WL
= 1.5 * 20
30
16.

Find the value of x and y respectively if 3x - 5y + 5 = 0 and 4x - 7y + 8 = 0

A. -5, -4

B. -5

C. 4, 5

D. 5, 4

Detailed Solution

3x - 5y + 5 = 0 → eqn1
4x - 7y + 8 = 0 → eqn2
eqn1 * 4; 12x - 20y + 20 = 0 → eqn3
eqn2 * 3; 12x - 21y + 24 = 0 → eqn4
eqn3 - eqn4 = y - 4 = 0
∴ y = 4
From eqn1,
3x - 5y + 5 = 0
3x - 5(4) + 5 = 0
3x - 20 + 5 = 0
3x - 15 = 0
3x = 15
x = 5
x and y = 5, 4 respectively
17.

Three consecutive terms of a geometric progression are given as n-2, n and n+3. Find the common ratio

A. 1/4

B. 1/2

C. 2/3

D. 3/2

Detailed Solution

\(r=\frac{n}{n-2}\hspace{1mm}and\hspace{1mm}r=\frac{n+3}{n}\\∴\frac{n}{n-2}=\frac{n+3}{n}\\n^2 = n^2 +3n - 2n-6\\0=n-6\\∴n=6\\But\hspace{1mm}r = \frac{n}{n-2}\\r=\frac{6}{6-2}\\\frac{6}{4}=\frac{3}{2}\)
18.

Triangle OPQ above is the solution of the inequalities

A. x + 1 ≥ 0, y + x ≤ 0, y - x ≥ 0

B. y + x ≤ 0, y - x ≥ 0, x -1 ≥ 0

C. x - 1 ≤ 0, y - x ≥ o, y + x ≥ 0

D. x - 1 ≤ 0, y + x ≤ 0, y - x ≤ 0

Detailed Solution

Lines bounding Δ OPQ
OQ; y - x = 0
y - x ≥ 0
PQ; x + 1 = 0
x + 1 ≥ = 0
PO; y + x = 0
y + x ≤ 0
∴ x + 1 ≥ 0, y + x ≤ 0, y - x ≥ 0
19.

Factorize completely 4abx - 2axy -12b2x + 6bxy

A. 2x(a - 3b)(2b - y)

B. 2x(3b - a)(2b - y)

C. 2x(a - 3b)(y - 2b)

D. 2x(2b - a)(3b - y)

Detailed Solution

4abx - 2axy - 12b2x + 6bxy = (4abx - 2axy) - (12b2x - 6bxy)
= 2ax(2b - y) -6bx(2b - y)
= (2ax - 6bx)(2b - y)
= 2x(a - 3b)(2b - y)
20.

The sum of the first n terms of an arithmetic progresssion is 252. If the first term is -16 and the last term is 72, find the number of terms in the series

A. 6

B. 7

C. 8

D. 9

Detailed Solution

\(S_n = 252, a = -16\hspace{1mm}and\hspace{1mm}l = 72\\S_n = \frac{n}{2}(-16+72)\\252 = \frac{n}{2}(-16+72)\\n=\frac{504}{56}\\n=9\)
11.

Given:
U = {Even numbers between 0 and 30}
P = {Multiples of 6 between 0 and 30}
Q = {Multiples of 4 between 0 and 30}
Find (P∪Q)c

A. {2, 10, 14, 22, 26}

B. {0, 10, 14, 22, 26}

C. {2,4, 14, 18, 26}

D. {0, 2, 6, 22, 26}

Detailed Solution

U = {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30}
P = {6,12,18,24,30}
Q = {4,8,12,16,20,24,28}
P∪Q = {4,6,8,12,16,18,20,24,28,30}
(P∪Q)c = {2,10,14,22,26}
12.

X varies directly as the product of u and v and inversely as their sum. If x = 3 when u = 3 and v = 1, what is the value of x if u = 3 and v = 3?

A. 3

B. 4

C. 6

D. 9

Detailed Solution

\(x\propto \frac{uv}{u+v}\\x = \frac{kuv}{u+v}\\K = \frac{x(u+v)}{uv}\\\frac{3(3+1)}{3\times1}\\\frac{3\times4}{3}\\k = 4\\x=\frac{4uv}{u+v}\\x=\frac{4\times 3\times3}{3+3}\\x=\frac{36}{6}\\x=6\)
13.

Find the range of the value of x satisfying the inequalities 5 + x \(\leq\) 8 and 13 + x \(\geq\) 7

A. -3 \(\leq\) x \(\leq\) 3

B. 3 \(\leq\) x \(\leq\) 6

C. -6 \(\leq\) x \(\leq\) 3

D. -6 \(\leq\) x \(\leq\) -3

Detailed Solution

5 + x \(\leq\) 8 and 13 + x \(\geq\) 7
5 + x \(\leq\) 8
X \(\leq\) 8 – 5
X \(\leq\) 3
And 13 + x \(\geq\) 7
X \(\geq\) 7 – 15
X \(\geq\) -7
Combining the two together
-6 \(\leq\) x \(\leq\) 3
14.

The graph of the function y = x\(^2\) + 4 and a straight line PQ are drawn to solve the equation x\(^2\) - 3x + 2 = 0. What is the equation of PQ?

A. y = 3x - 2

B. y = 3x + 2

C. y = 3x - 4

D. y = 3x + 4

Detailed Solution

x\(^2\) + 4 = x\(^2\) - 3x + 2
3x + 2 = y
15.

The length a person can jump is inversely proportional to his weight. If a 20 kg person can jump 1.5 m, find the constant of proportionality

A. 60

B. 30

C. 20

D. 15

Detailed Solution

L ∝ 1/W
L = K/W
K = WL
= 1.5 * 20
30
16.

Find the value of x and y respectively if 3x - 5y + 5 = 0 and 4x - 7y + 8 = 0

A. -5, -4

B. -5

C. 4, 5

D. 5, 4

Detailed Solution

3x - 5y + 5 = 0 → eqn1
4x - 7y + 8 = 0 → eqn2
eqn1 * 4; 12x - 20y + 20 = 0 → eqn3
eqn2 * 3; 12x - 21y + 24 = 0 → eqn4
eqn3 - eqn4 = y - 4 = 0
∴ y = 4
From eqn1,
3x - 5y + 5 = 0
3x - 5(4) + 5 = 0
3x - 20 + 5 = 0
3x - 15 = 0
3x = 15
x = 5
x and y = 5, 4 respectively
17.

Three consecutive terms of a geometric progression are given as n-2, n and n+3. Find the common ratio

A. 1/4

B. 1/2

C. 2/3

D. 3/2

Detailed Solution

\(r=\frac{n}{n-2}\hspace{1mm}and\hspace{1mm}r=\frac{n+3}{n}\\∴\frac{n}{n-2}=\frac{n+3}{n}\\n^2 = n^2 +3n - 2n-6\\0=n-6\\∴n=6\\But\hspace{1mm}r = \frac{n}{n-2}\\r=\frac{6}{6-2}\\\frac{6}{4}=\frac{3}{2}\)
18.

Triangle OPQ above is the solution of the inequalities

A. x + 1 ≥ 0, y + x ≤ 0, y - x ≥ 0

B. y + x ≤ 0, y - x ≥ 0, x -1 ≥ 0

C. x - 1 ≤ 0, y - x ≥ o, y + x ≥ 0

D. x - 1 ≤ 0, y + x ≤ 0, y - x ≤ 0

Detailed Solution

Lines bounding Δ OPQ
OQ; y - x = 0
y - x ≥ 0
PQ; x + 1 = 0
x + 1 ≥ = 0
PO; y + x = 0
y + x ≤ 0
∴ x + 1 ≥ 0, y + x ≤ 0, y - x ≥ 0
19.

Factorize completely 4abx - 2axy -12b2x + 6bxy

A. 2x(a - 3b)(2b - y)

B. 2x(3b - a)(2b - y)

C. 2x(a - 3b)(y - 2b)

D. 2x(2b - a)(3b - y)

Detailed Solution

4abx - 2axy - 12b2x + 6bxy = (4abx - 2axy) - (12b2x - 6bxy)
= 2ax(2b - y) -6bx(2b - y)
= (2ax - 6bx)(2b - y)
= 2x(a - 3b)(2b - y)
20.

The sum of the first n terms of an arithmetic progresssion is 252. If the first term is -16 and the last term is 72, find the number of terms in the series

A. 6

B. 7

C. 8

D. 9

Detailed Solution

\(S_n = 252, a = -16\hspace{1mm}and\hspace{1mm}l = 72\\S_n = \frac{n}{2}(-16+72)\\252 = \frac{n}{2}(-16+72)\\n=\frac{504}{56}\\n=9\)