Year : 
2004
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

11 - 20 of 50 Questions

# Question Ans
11.

Find the area of a rectangle of length 4cm and whose diagonal is 6cm, (Leave your answer in surd form)

A. 8√3cm2

B. 12√3cm2

C. 16√2cm2

D. 16√3cm2

Detailed Solution

|AB| = 4cm
|BC| = 8cm
In right-angled BAC;
8\(^2\) = 4\(^2\) + |AC|\(^2\)
|AC|\(^2\) = 8\(^2\) - 4\(^2\)
|AC\\(^2\) = 64 - 16 → 48
|AC| = \(\sqrt{48}\)cm → \(4\sqrt{3}cm\)
The area of rectangle = L x B
= |AB| x |AC|
= \((4 \times 4\sqrt{3}cm^2\)
=16\sqrt{3}cm^2\)
12.

Given that x + y = 7 and 3x-y = 5, evaluate \(\frac{y}{2}-3\).

A. -1

B. 1

C. 3

D. 4

Detailed Solution

\(x + y = 7 ------ I\\
3x – y = 5 ------ II\)
Add I and II;
\(4x = 12 => x = \frac{12}{4} = 3\\
Y = 7 – 3 = 4, evaluate \hspace{1mm} \frac{y}{2} – 3\\
\frac{4}{2} – 3 => 2-3 = -1\)
13.

In the diagram, POQ is the diameter of the circle centre O. Calculate ∠QRS

A. 35o

B. 70o

C. 100o

D. 125o

Detailed Solution

∠PSQ = 90° (angle in a semi-circle)
(when SR is joined to SP)
∠SPQ = 180 – (90+35) = 180 – 125 = 55°
∠QRS + ∠SPQ = 180° (opposite angles in a cyclic quad is supplementary)
∠QRS = 180° - 55°
= 125°
14.

If \(\left(\frac{1}{4}\right)^{(2-y)} = 1\), find y.

A. -2

B. \(-\frac{1}{2}\).

C. \(\frac{1}{2}\)

D. 2

Detailed Solution

\(2^{-2(2-y)}-x=2^{0}; -4 + 2y = 0\\
2y = 4; y = 2\)
15.

Calculate the total surface area of a cupboard which measures 12cm by 10cm by 8cm

A. 1920cm2

B. 592cm2

C. 296cm2

D. 148cm2

Detailed Solution

Total surfaced area of a cupboard = lb + lh + bh
l = length h = height b = base
l = 12cm h = 10cm b = 8cm
T.S.A \(= (12 \times 8 \times 12 \times 10 + 8 \times 10)cm^\\
= (96 + 120 + 80)cm^2 = 296cm^2\)
16.

If \(\frac{x}{a+1}+\frac{y}{b}\) 1. Make y the subject of the relation

A. \(\frac{b(a-x+1)}{a+1}\)

B. \(\frac{a+1}{b(a-x+1)}\)

C. \(\frac{a(b-x+1)}{b+1}\)

D. \(\frac{b}{a(b-x+1)}\)

Detailed Solution

If \(\frac{bx+y(a+1)}{b(a+1)}=1\\
bx + ya + y = ba + b; y(a+1) = ba+b-bx\\
y(a+1)=b(a+1-x); y = \frac{b(1+a-x}{a+1}\)
17.

Lf \(log_q p= r\), express p in terms of q and r

A. p =qr

B. p =rq

C. \(p = \frac{r}{q}\)

D. p=qr

Detailed Solution

If \(log_q p\) = r convert from logarithm to indices
P = q\(^r\)
18.

Find the next two terms of the sequence
1, 5, 14, 30, 55, ...

A. 61,110

B. 67,116

C. 81,140

D. 91, 140

Detailed Solution

\(1 + 2^2 = 5 + 3^2 = 14 + 4^2 = 30 + 5^2 = 55\)
\(55 + 6^2 = 91 + 7^2 = 140\).
91, 140 are the next two terms.
19.

Each interior angle of a regular polygon is 108°. How many sides has it?

A. 5

B. 7

C. 9

D. 14

Detailed Solution

The exterior angle of the polygon = 180 – 108 = 72°. The sum of exterior angle of the regular polygon = 360°
The number of sides \(=\frac{360}{72}=5\)
20.

Solve the equation 10-3x-x2 = 0

A. x=2 or-5

B. x= -2 or 5

C. x = 1 or 10

D. x = 2 or 5

Detailed Solution

10 – 3x - x2 = 0; 10 – 5x + 2x - x2 = 0
5(2 – x) + x(2 – x) = 0; (2 – x)(5 + x) = 0
2 – x = 0 or 5 + x = 0; x = 2 or x = -5
11.

Find the area of a rectangle of length 4cm and whose diagonal is 6cm, (Leave your answer in surd form)

A. 8√3cm2

B. 12√3cm2

C. 16√2cm2

D. 16√3cm2

Detailed Solution

|AB| = 4cm
|BC| = 8cm
In right-angled BAC;
8\(^2\) = 4\(^2\) + |AC|\(^2\)
|AC|\(^2\) = 8\(^2\) - 4\(^2\)
|AC\\(^2\) = 64 - 16 → 48
|AC| = \(\sqrt{48}\)cm → \(4\sqrt{3}cm\)
The area of rectangle = L x B
= |AB| x |AC|
= \((4 \times 4\sqrt{3}cm^2\)
=16\sqrt{3}cm^2\)
12.

Given that x + y = 7 and 3x-y = 5, evaluate \(\frac{y}{2}-3\).

A. -1

B. 1

C. 3

D. 4

Detailed Solution

\(x + y = 7 ------ I\\
3x – y = 5 ------ II\)
Add I and II;
\(4x = 12 => x = \frac{12}{4} = 3\\
Y = 7 – 3 = 4, evaluate \hspace{1mm} \frac{y}{2} – 3\\
\frac{4}{2} – 3 => 2-3 = -1\)
13.

In the diagram, POQ is the diameter of the circle centre O. Calculate ∠QRS

A. 35o

B. 70o

C. 100o

D. 125o

Detailed Solution

∠PSQ = 90° (angle in a semi-circle)
(when SR is joined to SP)
∠SPQ = 180 – (90+35) = 180 – 125 = 55°
∠QRS + ∠SPQ = 180° (opposite angles in a cyclic quad is supplementary)
∠QRS = 180° - 55°
= 125°
14.

If \(\left(\frac{1}{4}\right)^{(2-y)} = 1\), find y.

A. -2

B. \(-\frac{1}{2}\).

C. \(\frac{1}{2}\)

D. 2

Detailed Solution

\(2^{-2(2-y)}-x=2^{0}; -4 + 2y = 0\\
2y = 4; y = 2\)
15.

Calculate the total surface area of a cupboard which measures 12cm by 10cm by 8cm

A. 1920cm2

B. 592cm2

C. 296cm2

D. 148cm2

Detailed Solution

Total surfaced area of a cupboard = lb + lh + bh
l = length h = height b = base
l = 12cm h = 10cm b = 8cm
T.S.A \(= (12 \times 8 \times 12 \times 10 + 8 \times 10)cm^\\
= (96 + 120 + 80)cm^2 = 296cm^2\)
16.

If \(\frac{x}{a+1}+\frac{y}{b}\) 1. Make y the subject of the relation

A. \(\frac{b(a-x+1)}{a+1}\)

B. \(\frac{a+1}{b(a-x+1)}\)

C. \(\frac{a(b-x+1)}{b+1}\)

D. \(\frac{b}{a(b-x+1)}\)

Detailed Solution

If \(\frac{bx+y(a+1)}{b(a+1)}=1\\
bx + ya + y = ba + b; y(a+1) = ba+b-bx\\
y(a+1)=b(a+1-x); y = \frac{b(1+a-x}{a+1}\)
17.

Lf \(log_q p= r\), express p in terms of q and r

A. p =qr

B. p =rq

C. \(p = \frac{r}{q}\)

D. p=qr

Detailed Solution

If \(log_q p\) = r convert from logarithm to indices
P = q\(^r\)
18.

Find the next two terms of the sequence
1, 5, 14, 30, 55, ...

A. 61,110

B. 67,116

C. 81,140

D. 91, 140

Detailed Solution

\(1 + 2^2 = 5 + 3^2 = 14 + 4^2 = 30 + 5^2 = 55\)
\(55 + 6^2 = 91 + 7^2 = 140\).
91, 140 are the next two terms.
19.

Each interior angle of a regular polygon is 108°. How many sides has it?

A. 5

B. 7

C. 9

D. 14

Detailed Solution

The exterior angle of the polygon = 180 – 108 = 72°. The sum of exterior angle of the regular polygon = 360°
The number of sides \(=\frac{360}{72}=5\)
20.

Solve the equation 10-3x-x2 = 0

A. x=2 or-5

B. x= -2 or 5

C. x = 1 or 10

D. x = 2 or 5

Detailed Solution

10 – 3x - x2 = 0; 10 – 5x + 2x - x2 = 0
5(2 – x) + x(2 – x) = 0; (2 – x)(5 + x) = 0
2 – x = 0 or 5 + x = 0; x = 2 or x = -5