Year : 
2019
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

61 - 70 of 80 Questions

# Question Ans
61.

If the universal set μ = {x : 1 ≤ x ≤ 20} and
A = {y : multiple of 3}
B = |z : odd numbers}
Find A ∩ B

A. {1, 3, 6}

B. {3, 5, 9, 12}

C. {3, 9, 15}

D. {2, 3, 9}

Detailed Solution

μ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
A = {3, 6, 9, 12, 15, 18}
B = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
A ∩ B = {3, 9, 15}
There is an explanation video available below.
62.

In a committee of 5, which must be selected from 4 males and 3 females. In how many ways can the members be chosen if it were to include 2 females?

A. 144 ways

B. 15 ways

C. 185 ways

D. 12 ways

Detailed Solution

For the committee to include 2 females, we must have 3 males, so that there should be 5 members.
That is, \(^4C_3 \times ^3C_2\)
= \(\frac{4!}{(4 - 3)! 3!} \times \frac{3!}{(3 - 2)! 2!}\)
= 4 × 3 = 12 ways
There is an explanation video available below.
63.

Find the value of k in the equation: \(\sqrt{28} + \sqrt{112} - \sqrt{k} = \sqrt{175}\)

A. \(\sqrt{28}\)

B. 7

C. 28

D. \(\sqrt{7}\)

Detailed Solution

\(\sqrt{28} + \sqrt{112} - \sqrt{k} = \sqrt{175}\)
\(\sqrt{4 \times 7} + \sqrt{16 \times 7} - \sqrt{k} = \sqrt{25 \times 7}\)
\(2\sqrt{7} + 4\sqrt{7} - \sqrt{k} = 5\sqrt{7}\)
\(6\sqrt{7} - 5\sqrt{7} = \sqrt{k}\)
\(\sqrt{k} = \sqrt{7}\)
\(\implies k = 7\)
There is an explanation video available below.
64.

Evaluate \(\frac{2\log_{3} 9 \times \log_{3} 81^{-2}}{\log_{5} 625}\)

A. 4

B. -32

C. -8

D. 16

Detailed Solution

\(\frac{2\log_{3} 9 \times \log_{3} 81^{-2}}{\log_{5} 625}\)
= \(\frac{2\log_3 3^2 \times \log_3 (3^4)^{-2}}{\log_5 (5^4)}\)
= \(\frac{4\log_3 3 \times -8\log_3 3}{4\log_5 5}\)
= -8.
There is an explanation video available below.
65.

Find the value of x for \(\frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}\)

A. x \(\geq\) -5

B. x \(\geq\) -1

C. x \(\leq\) -1

D. x \(\leq\) 3

Detailed Solution

\(\frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}\)
\(\frac{2 + 2x - 6}{3} \geq \frac{4x - 6}{5}\)
\(\frac{2x - 4}{3} \geq \frac{4x - 6}{5}\)
\(5(2x - 4) \geq 3(4x - 6)\)
\(10x - 20 \geq 12x - 18\)
\(10x - 12x \geq -18 + 20\)
\(-2x \geq 2\)
\(x \leq -1\)
There is an explanation video available below.
66.

Determine the values for which \(x^2 - 7x + 10 \leq 0\)

A. 2 \(\leq\) x \(\geq\) 5

B. -2 \(\leq\) x \(\leq\) 3

C. -2 \(\leq\) x \(\geq\) 3

D. 2 \(\leq\) x \(\leq\) 5

Detailed Solution

\(x^2 - 7x + 10 \leq 0\)
Solve for \(x^2 - 7x + 10 = 0\)
We have, (x - 5)(x - 2) \(\leq\) 0.
Conditions:
Case 1: (x - 5) \(\leq\) 0, (x - 2) \(\geq\) 0.
\(\implies\) x \(\leq\) 5; x \(\geq\) 2.
2 \(\leq\) x \(\leq\) 5.
Choosing x = 3,
3\(^2\) - 7(3) + 10 = 9 - 21 + 10
= -2 \(\leq\) 0.
\(\therefore\) 2 \(\leq\) x \(\leq\) 5.
There is an explanation video available below.
67.

Find the polynomial if given q(x) = x\(^2\) - x - 5, d(x) = 3x - 1 and r(x) = 7.

A. 3x\(^3\) - 4x\(^2\) - 14x + 12

B. 3x\(^2\) + 3x - 7

C. 3x\(^3\) + 4x\(^2\) + 14x - 12

D. 3x\(^2\) - 3x + 4

Detailed Solution

Given q(x) [quotient], d(x) [divisor] and r(x) [remainder], the polynomial is gotten by multiplying the quotient and the divisor and adding the remainder.
i.e In this case, the polynomial = (x\(^2\) - x - 5)(3x - 1) + 7.
= (3x\(^3\) - x\(^2\) - 3x\(^2\) + x - 15x + 5) + 7
= (3x\(^3\) - 4x\(^2\) - 14x + 5) + 7
= 3x\(^3\) - 4x\(^2\) - 14x + 12
There is an explanation video available below.
68.

If 2x\(^2\) + x - 3 divides x - 2, find the remainder.

A. 7

B. 3

C. 5

D. 6

Detailed Solution

When you divide a polynomial p(x) by (x - a), the remainder = p(a)
i.e. In the case of 2x\(^2\) + x - 3 \(\div\) (x - 2), the remainder = p(2).
= 2(2)\(^2\) + 2 - 3
= 8 + 2 - 3
= 7.
There is an explanation video available below.
69.

If \(\begin{vmatrix} 2 & -5 & 3 \\ x & 1 & 4 \\ 0 & 3 & 2 \end{vmatrix} = 132\), find the value of x.

A. 5

B. 8

C. 6

D. 3

Detailed Solution

\(\begin{vmatrix} 2 & -5 & 3 \\ x & 1 & 4 \\ 0 & 3 & 2 \end{vmatrix} = 132\)
\(\implies 2 \begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix} - (-5) \begin{vmatrix} x & 4 \\ 0 & 2 \end{vmatrix} + 3 \begin{vmatrix} x & 1 \\ 0 & 3 \end{vmatrix} = 132\)
\(2(2 - 12) + 5(2x) + 3(3x) = 132\)
\(-20 + 10x + 9x = 132\)
\(19x = 152\)
\(x = 8\)
There is an explanation video available below.
70.

Given the matrix \(A = \begin{vmatrix} 3 & -2 \\ 1 & 6 \end{vmatrix}\). Find the inverse of matrix A.

A. \(\begin{vmatrix} 6 & 2 \\ 1 & 6 \end{vmatrix}\)

B. \(\begin{vmatrix} \frac{2}{11} & \frac{1}{12}\\ \frac{3}{20} & \frac{1}{10} \end{vmatrix}\)

C. \(\begin{vmatrix} -3 & 2 \\ -1 & -6 \end{vmatrix}\)

D. \(\begin{vmatrix} \frac{3}{10} & \frac{1}{10} \\ \frac{-1}{20} & \frac{3}{20}\end{vmatrix}\)

Detailed Solution

\(A = \begin{vmatrix} 3 & -2 \\ 1 & 6 \end{vmatrix}\)
|A| = (3 x 6) - (-2 x 1)
= 18 + 2
= 20.
A\(^{-1}\) = \(\frac{1}{20} \begin{vmatrix} 6 & 2 \\ -1 & 3 \end{vmatrix}\)
= \(\begin{vmatrix} \frac{6}{20} & \frac{2}{20} \\ \frac{-1}{20} & \frac{3}{20} \end{vmatrix}\)
= \(\begin{vmatrix} \frac{3}{10} & \frac{1}{10} \\ \frac{-1}{20} & \frac{3}{20} \end{vmatrix}\)
There is an explanation video available below.
61.

If the universal set μ = {x : 1 ≤ x ≤ 20} and
A = {y : multiple of 3}
B = |z : odd numbers}
Find A ∩ B

A. {1, 3, 6}

B. {3, 5, 9, 12}

C. {3, 9, 15}

D. {2, 3, 9}

Detailed Solution

μ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
A = {3, 6, 9, 12, 15, 18}
B = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
A ∩ B = {3, 9, 15}
There is an explanation video available below.
62.

In a committee of 5, which must be selected from 4 males and 3 females. In how many ways can the members be chosen if it were to include 2 females?

A. 144 ways

B. 15 ways

C. 185 ways

D. 12 ways

Detailed Solution

For the committee to include 2 females, we must have 3 males, so that there should be 5 members.
That is, \(^4C_3 \times ^3C_2\)
= \(\frac{4!}{(4 - 3)! 3!} \times \frac{3!}{(3 - 2)! 2!}\)
= 4 × 3 = 12 ways
There is an explanation video available below.
63.

Find the value of k in the equation: \(\sqrt{28} + \sqrt{112} - \sqrt{k} = \sqrt{175}\)

A. \(\sqrt{28}\)

B. 7

C. 28

D. \(\sqrt{7}\)

Detailed Solution

\(\sqrt{28} + \sqrt{112} - \sqrt{k} = \sqrt{175}\)
\(\sqrt{4 \times 7} + \sqrt{16 \times 7} - \sqrt{k} = \sqrt{25 \times 7}\)
\(2\sqrt{7} + 4\sqrt{7} - \sqrt{k} = 5\sqrt{7}\)
\(6\sqrt{7} - 5\sqrt{7} = \sqrt{k}\)
\(\sqrt{k} = \sqrt{7}\)
\(\implies k = 7\)
There is an explanation video available below.
64.

Evaluate \(\frac{2\log_{3} 9 \times \log_{3} 81^{-2}}{\log_{5} 625}\)

A. 4

B. -32

C. -8

D. 16

Detailed Solution

\(\frac{2\log_{3} 9 \times \log_{3} 81^{-2}}{\log_{5} 625}\)
= \(\frac{2\log_3 3^2 \times \log_3 (3^4)^{-2}}{\log_5 (5^4)}\)
= \(\frac{4\log_3 3 \times -8\log_3 3}{4\log_5 5}\)
= -8.
There is an explanation video available below.
65.

Find the value of x for \(\frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}\)

A. x \(\geq\) -5

B. x \(\geq\) -1

C. x \(\leq\) -1

D. x \(\leq\) 3

Detailed Solution

\(\frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}\)
\(\frac{2 + 2x - 6}{3} \geq \frac{4x - 6}{5}\)
\(\frac{2x - 4}{3} \geq \frac{4x - 6}{5}\)
\(5(2x - 4) \geq 3(4x - 6)\)
\(10x - 20 \geq 12x - 18\)
\(10x - 12x \geq -18 + 20\)
\(-2x \geq 2\)
\(x \leq -1\)
There is an explanation video available below.
66.

Determine the values for which \(x^2 - 7x + 10 \leq 0\)

A. 2 \(\leq\) x \(\geq\) 5

B. -2 \(\leq\) x \(\leq\) 3

C. -2 \(\leq\) x \(\geq\) 3

D. 2 \(\leq\) x \(\leq\) 5

Detailed Solution

\(x^2 - 7x + 10 \leq 0\)
Solve for \(x^2 - 7x + 10 = 0\)
We have, (x - 5)(x - 2) \(\leq\) 0.
Conditions:
Case 1: (x - 5) \(\leq\) 0, (x - 2) \(\geq\) 0.
\(\implies\) x \(\leq\) 5; x \(\geq\) 2.
2 \(\leq\) x \(\leq\) 5.
Choosing x = 3,
3\(^2\) - 7(3) + 10 = 9 - 21 + 10
= -2 \(\leq\) 0.
\(\therefore\) 2 \(\leq\) x \(\leq\) 5.
There is an explanation video available below.
67.

Find the polynomial if given q(x) = x\(^2\) - x - 5, d(x) = 3x - 1 and r(x) = 7.

A. 3x\(^3\) - 4x\(^2\) - 14x + 12

B. 3x\(^2\) + 3x - 7

C. 3x\(^3\) + 4x\(^2\) + 14x - 12

D. 3x\(^2\) - 3x + 4

Detailed Solution

Given q(x) [quotient], d(x) [divisor] and r(x) [remainder], the polynomial is gotten by multiplying the quotient and the divisor and adding the remainder.
i.e In this case, the polynomial = (x\(^2\) - x - 5)(3x - 1) + 7.
= (3x\(^3\) - x\(^2\) - 3x\(^2\) + x - 15x + 5) + 7
= (3x\(^3\) - 4x\(^2\) - 14x + 5) + 7
= 3x\(^3\) - 4x\(^2\) - 14x + 12
There is an explanation video available below.
68.

If 2x\(^2\) + x - 3 divides x - 2, find the remainder.

A. 7

B. 3

C. 5

D. 6

Detailed Solution

When you divide a polynomial p(x) by (x - a), the remainder = p(a)
i.e. In the case of 2x\(^2\) + x - 3 \(\div\) (x - 2), the remainder = p(2).
= 2(2)\(^2\) + 2 - 3
= 8 + 2 - 3
= 7.
There is an explanation video available below.
69.

If \(\begin{vmatrix} 2 & -5 & 3 \\ x & 1 & 4 \\ 0 & 3 & 2 \end{vmatrix} = 132\), find the value of x.

A. 5

B. 8

C. 6

D. 3

Detailed Solution

\(\begin{vmatrix} 2 & -5 & 3 \\ x & 1 & 4 \\ 0 & 3 & 2 \end{vmatrix} = 132\)
\(\implies 2 \begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix} - (-5) \begin{vmatrix} x & 4 \\ 0 & 2 \end{vmatrix} + 3 \begin{vmatrix} x & 1 \\ 0 & 3 \end{vmatrix} = 132\)
\(2(2 - 12) + 5(2x) + 3(3x) = 132\)
\(-20 + 10x + 9x = 132\)
\(19x = 152\)
\(x = 8\)
There is an explanation video available below.
70.

Given the matrix \(A = \begin{vmatrix} 3 & -2 \\ 1 & 6 \end{vmatrix}\). Find the inverse of matrix A.

A. \(\begin{vmatrix} 6 & 2 \\ 1 & 6 \end{vmatrix}\)

B. \(\begin{vmatrix} \frac{2}{11} & \frac{1}{12}\\ \frac{3}{20} & \frac{1}{10} \end{vmatrix}\)

C. \(\begin{vmatrix} -3 & 2 \\ -1 & -6 \end{vmatrix}\)

D. \(\begin{vmatrix} \frac{3}{10} & \frac{1}{10} \\ \frac{-1}{20} & \frac{3}{20}\end{vmatrix}\)

Detailed Solution

\(A = \begin{vmatrix} 3 & -2 \\ 1 & 6 \end{vmatrix}\)
|A| = (3 x 6) - (-2 x 1)
= 18 + 2
= 20.
A\(^{-1}\) = \(\frac{1}{20} \begin{vmatrix} 6 & 2 \\ -1 & 3 \end{vmatrix}\)
= \(\begin{vmatrix} \frac{6}{20} & \frac{2}{20} \\ \frac{-1}{20} & \frac{3}{20} \end{vmatrix}\)
= \(\begin{vmatrix} \frac{3}{10} & \frac{1}{10} \\ \frac{-1}{20} & \frac{3}{20} \end{vmatrix}\)
There is an explanation video available below.