Year : 
2019
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 80 Questions

# Question Ans
21.

If given two points A(3, 12) and B(5, 22) on a x-y plane. Find the equation of the straight line with intercept at 2.

A. y = 5x + 2

B. y = 5x + 3

C. y = 12x + 2

D. y = 22x + 3

Detailed Solution

The equation of a straight line is given as \(y = mx + b\)
where m = the slope of the line
b = intercept
Given points A(3, 12) and B(5, 22), the slope = \(\frac{22 - 12}{5 - 3}\)
= \(\frac{10}{2}\) = 5
Hence, the equation of the line is \(y = 5x + 2\).
There is an explanation video available below.
22.

If P(2, m) is the midpoint of the line joining Q(m, n) and R(n, -4), find the values of m and n.

A. m = 0, n = 4

B. m = 4, n = 0

C. m = 2, n = 2

D. m = -2, n = 4

Detailed Solution

Q(m, n) and R(n, -4)
Midpoint : P(2, m)
\(\implies (\frac{m + n}{2}, \frac{n - 4}{2}) = (2, m)\)
\(m + n = 2 \times 2 \implies m + n = 4 ... (i)\)
\(n - 4 = 2 \times m \implies n - 4 = 2m ... (ii)\)
Solving (i) and (ii) simultaneously,
m = 0 and n = 4.
There is an explanation video available below.
23.

If \(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\), find the value of x.

A. 10

B. 30

C. 14

D. 28

Detailed Solution

\(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\)
\(\implies (2 \times 9) - (-4 \times x) = 58\)
\(18 + 4x = 58 \implies 4x = 58 - 18 = 40\)
\(x = 10\)
There is an explanation video available below.
24.

If \(y = 6x^3 + 2x^{-2} - x^{-3}\), find \(\frac{\mathrm d y}{\mathrm d x}\).

A. \(\frac{\mathrm d y}{\mathrm d x} = 15x^2 - 4x^{-2} - 3x^{-2}\)

B. \(\frac{\mathrm d y}{\mathrm d x} = 6x + 4x^{-1} - 3x^{-4}\)

C. \(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)

D. \(\frac{\mathrm d y}{\mathrm d x} = 12x^2 + 4x^{-1} - 3x^{-2}\)

Detailed Solution

\(y = 6x^3 + 2x^{-2} - x^{-3}\)
\(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)
There is an explanation video available below.
25.

\(\frac{d}{dx} [\log (4x^3 - 2x)]\) is equal to

A. \(\frac{12x - 2}{4x^2}\)

B. \(\frac{43x^2 - 2x}{7x}\)

C. \(\frac{4x^2 - 2}{7x + 6}\)

D. \(\frac{12x^2 - 2}{4x^3 - 2x}\)

Detailed Solution

\(\frac{d}{dx} [\log (4x^3 - 2x)]\) ... (1)
Let u = 4x\(^3\) - 2x.
\(\frac{\mathrm d}{\mathrm d x} (\log (4x^3 - 2x)) = (\frac{\mathrm d}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)
\(\frac{\mathrm d}{\mathrm d u} (\log u)\) = \(\frac{1}{u}\)
\(\frac{\mathrm d u}{\mathrm d x} = 12x^2 - 2\)
\(\therefore \frac{d}{dx} [\log (4x^3 - 2x)] = \frac{12x^2 - 2}{u}\)
= \(\frac{12x^2 - 2}{4x^3 - 2x}\)


There is an explanation video available below.
26.

If \(f(x) = 3x^3 + 4x^2 + x - 8\), what is the value of f(-2)?

A. -24

B. 30

C. -18

D. -50

Detailed Solution

\(f(x) = 3x^3 + 4x^2 + x - 8\)
\(f(-2) = 3(-2)^3 + 4(-2)^2 + (-2) - 8\)
= \(-24 + 16 - 2 - 8\)
= -18
There is an explanation video available below.
27.

Solve for x in \(\frac{4x - 6}{3} \leq \frac{3 + 2x}{2}\)

A. \(x \leq 1\frac{1}{2}\)

B. \(x \leq \frac{21}{2}\)

C. \(x \geq \frac{21}{2}\)

D. \(x \geq 1\frac{1}{2}\)

Detailed Solution

\(\frac{4x - 6}{3} \leq \frac{3 + 2x}{2}\)
2(4x - 6) \(\leq\) 3(3 + 2x)
8x - 12 \(\leq\) 9 + 6x
8x - 6x \(\leq\) 9 + 12
2x \(\leq\) 21
\(x \leq \frac{21}{2}\)
There is an explanation video available below.
28.

Solve the inequality: -7 \(\leq\) 9 - 8x < 16 - x

A. -1 \(\leq\) x \(\leq\) 2

B. -1 \(\leq\) x < 2

C. -1 < x < 2

D. -1 < x \(\leq\) 2

Detailed Solution

-7 \(\leq\) 9 - 8x < 16 - x
-7 \(\leq\) 9 - 8x and 9 - 8x < 16 - x
-7 - 9 \(\leq\) -8x and -8x + x < 16 - 9
-16 \(\leq\) -8x and -7x < 7
\(\therefore\) x \(\leq\) 2 and -1 < x
-1 < x \(\leq\) 2.
There is an explanation video available below.
29.

The nth term of a sequence is given by 2\(^{2n - 1}\). Find the sum of the first four terms.

A. 74

B. 32

C. 42

D. 170

Detailed Solution

\(T_n = 2^{2n - 1}\)
\(T_1 = 2^{2(1) - 1} \)
= 2
\(T_2 = 2^{2(2) - 1}\)
= 8
\(T_3 = 2^{2(3) - 1}\)
= 32
\(T_4 = 2^{2(4) - 1}\)
= 128
\(T_1 + T_2 + T_3 + T_4 = 2 + 8 + 32 + 128\)
= 170
There is an explanation video available below.
30.

Integrate \(\int_{-1} ^{2} (2x^2 + x) \mathrm {d} x\)

A. \(4\frac{1}{2}\)

B. \(3\frac{1}{2}\)

C. \(7\frac{1}{2}\)

D. \(5\frac{1}{4}\)

Detailed Solution

\(\int_{-1} ^{2} (2x^2 + x) \mathrm {d} x\)
= \([\frac{2x^{2 + 1}}{3} + \frac{x^{1 + 1}}{2}]_{-1} ^{2}\)
= \([\frac{2x^{3}}{3} + \frac{x^{2}}{2}]_{-1} ^{2}\)
= \((\frac{2(2)^{3}}{3} + \frac{2^2}{2}) - (\frac{2(-1)^{3}}{3} + \frac{(-1)^{2}}{2})\)
= \((\frac{16}{3} + 2) - (\frac{-2}{3} + \frac{1}{2})\)
= \(\frac{22}{3} - (-\frac{1}{6})\)
= \(\frac{22}{3} + \frac{1}{6}\)
= \(\frac{15}{2}\)
= \(7\frac{1}{2}\)
There is an explanation video available below.
21.

If given two points A(3, 12) and B(5, 22) on a x-y plane. Find the equation of the straight line with intercept at 2.

A. y = 5x + 2

B. y = 5x + 3

C. y = 12x + 2

D. y = 22x + 3

Detailed Solution

The equation of a straight line is given as \(y = mx + b\)
where m = the slope of the line
b = intercept
Given points A(3, 12) and B(5, 22), the slope = \(\frac{22 - 12}{5 - 3}\)
= \(\frac{10}{2}\) = 5
Hence, the equation of the line is \(y = 5x + 2\).
There is an explanation video available below.
22.

If P(2, m) is the midpoint of the line joining Q(m, n) and R(n, -4), find the values of m and n.

A. m = 0, n = 4

B. m = 4, n = 0

C. m = 2, n = 2

D. m = -2, n = 4

Detailed Solution

Q(m, n) and R(n, -4)
Midpoint : P(2, m)
\(\implies (\frac{m + n}{2}, \frac{n - 4}{2}) = (2, m)\)
\(m + n = 2 \times 2 \implies m + n = 4 ... (i)\)
\(n - 4 = 2 \times m \implies n - 4 = 2m ... (ii)\)
Solving (i) and (ii) simultaneously,
m = 0 and n = 4.
There is an explanation video available below.
23.

If \(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\), find the value of x.

A. 10

B. 30

C. 14

D. 28

Detailed Solution

\(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\)
\(\implies (2 \times 9) - (-4 \times x) = 58\)
\(18 + 4x = 58 \implies 4x = 58 - 18 = 40\)
\(x = 10\)
There is an explanation video available below.
24.

If \(y = 6x^3 + 2x^{-2} - x^{-3}\), find \(\frac{\mathrm d y}{\mathrm d x}\).

A. \(\frac{\mathrm d y}{\mathrm d x} = 15x^2 - 4x^{-2} - 3x^{-2}\)

B. \(\frac{\mathrm d y}{\mathrm d x} = 6x + 4x^{-1} - 3x^{-4}\)

C. \(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)

D. \(\frac{\mathrm d y}{\mathrm d x} = 12x^2 + 4x^{-1} - 3x^{-2}\)

Detailed Solution

\(y = 6x^3 + 2x^{-2} - x^{-3}\)
\(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)
There is an explanation video available below.
25.

\(\frac{d}{dx} [\log (4x^3 - 2x)]\) is equal to

A. \(\frac{12x - 2}{4x^2}\)

B. \(\frac{43x^2 - 2x}{7x}\)

C. \(\frac{4x^2 - 2}{7x + 6}\)

D. \(\frac{12x^2 - 2}{4x^3 - 2x}\)

Detailed Solution

\(\frac{d}{dx} [\log (4x^3 - 2x)]\) ... (1)
Let u = 4x\(^3\) - 2x.
\(\frac{\mathrm d}{\mathrm d x} (\log (4x^3 - 2x)) = (\frac{\mathrm d}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)
\(\frac{\mathrm d}{\mathrm d u} (\log u)\) = \(\frac{1}{u}\)
\(\frac{\mathrm d u}{\mathrm d x} = 12x^2 - 2\)
\(\therefore \frac{d}{dx} [\log (4x^3 - 2x)] = \frac{12x^2 - 2}{u}\)
= \(\frac{12x^2 - 2}{4x^3 - 2x}\)


There is an explanation video available below.
26.

If \(f(x) = 3x^3 + 4x^2 + x - 8\), what is the value of f(-2)?

A. -24

B. 30

C. -18

D. -50

Detailed Solution

\(f(x) = 3x^3 + 4x^2 + x - 8\)
\(f(-2) = 3(-2)^3 + 4(-2)^2 + (-2) - 8\)
= \(-24 + 16 - 2 - 8\)
= -18
There is an explanation video available below.
27.

Solve for x in \(\frac{4x - 6}{3} \leq \frac{3 + 2x}{2}\)

A. \(x \leq 1\frac{1}{2}\)

B. \(x \leq \frac{21}{2}\)

C. \(x \geq \frac{21}{2}\)

D. \(x \geq 1\frac{1}{2}\)

Detailed Solution

\(\frac{4x - 6}{3} \leq \frac{3 + 2x}{2}\)
2(4x - 6) \(\leq\) 3(3 + 2x)
8x - 12 \(\leq\) 9 + 6x
8x - 6x \(\leq\) 9 + 12
2x \(\leq\) 21
\(x \leq \frac{21}{2}\)
There is an explanation video available below.
28.

Solve the inequality: -7 \(\leq\) 9 - 8x < 16 - x

A. -1 \(\leq\) x \(\leq\) 2

B. -1 \(\leq\) x < 2

C. -1 < x < 2

D. -1 < x \(\leq\) 2

Detailed Solution

-7 \(\leq\) 9 - 8x < 16 - x
-7 \(\leq\) 9 - 8x and 9 - 8x < 16 - x
-7 - 9 \(\leq\) -8x and -8x + x < 16 - 9
-16 \(\leq\) -8x and -7x < 7
\(\therefore\) x \(\leq\) 2 and -1 < x
-1 < x \(\leq\) 2.
There is an explanation video available below.
29.

The nth term of a sequence is given by 2\(^{2n - 1}\). Find the sum of the first four terms.

A. 74

B. 32

C. 42

D. 170

Detailed Solution

\(T_n = 2^{2n - 1}\)
\(T_1 = 2^{2(1) - 1} \)
= 2
\(T_2 = 2^{2(2) - 1}\)
= 8
\(T_3 = 2^{2(3) - 1}\)
= 32
\(T_4 = 2^{2(4) - 1}\)
= 128
\(T_1 + T_2 + T_3 + T_4 = 2 + 8 + 32 + 128\)
= 170
There is an explanation video available below.
30.

Integrate \(\int_{-1} ^{2} (2x^2 + x) \mathrm {d} x\)

A. \(4\frac{1}{2}\)

B. \(3\frac{1}{2}\)

C. \(7\frac{1}{2}\)

D. \(5\frac{1}{4}\)

Detailed Solution

\(\int_{-1} ^{2} (2x^2 + x) \mathrm {d} x\)
= \([\frac{2x^{2 + 1}}{3} + \frac{x^{1 + 1}}{2}]_{-1} ^{2}\)
= \([\frac{2x^{3}}{3} + \frac{x^{2}}{2}]_{-1} ^{2}\)
= \((\frac{2(2)^{3}}{3} + \frac{2^2}{2}) - (\frac{2(-1)^{3}}{3} + \frac{(-1)^{2}}{2})\)
= \((\frac{16}{3} + 2) - (\frac{-2}{3} + \frac{1}{2})\)
= \(\frac{22}{3} - (-\frac{1}{6})\)
= \(\frac{22}{3} + \frac{1}{6}\)
= \(\frac{15}{2}\)
= \(7\frac{1}{2}\)
There is an explanation video available below.