Year : 
2019
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

41 - 50 of 80 Questions

# Question Ans
41.

Simplify \(\frac{0.0839 \times 6.381}{5.44}\) to 2 significant figures.

A. 0.2809

B. 2.51

C. 3.5

D. 0.098

Detailed Solution

There is an explanation video available below.
42.

Find the value of x and y in the simultaneous equation: 3x + y = 21; xy = 30

A. x = 3 or 7, y = 12 or 8

B. x = 6 or 1, y = 11 or 5

C. x = 2 or 5, y = 15 or 6

D. x = 1 or 5, y = 10 or 7

Detailed Solution

3x + y = 21 ... (i);
xy = 30 ... (ii)
From (ii), \(y = \frac{30}{x}\). Putting the value of y in (i), we have
3x + \(\frac{30}{x}\) = 21
\(\implies\) 3x\(^2\) + 30 = 21x
3x\(^2\) - 21x + 30 = 0
3x\(^2\) - 15x - 6x + 30 = 0
3x(x - 5) - 6(x - 5) = 0
(3x - 6)(x - 5) = 0
3x - 6 = 0 \(\implies\) x = 2.
x - 5 = 0 \(\implies\) x = 5.
If x = 2, y = \(\frac{30}{2}\) = 15;
If x = 5, y = \(\frac{30}{5}\) = 6.
There is an explanation video available below.
43.

Points X and Y are 20km North and 9km East of point O, respectively. What is the bearing of Y from X? Correct to the nearest degree.

A. 24°

B. 56°

C. 127°

D. 156°

Detailed Solution


\(\tan \theta = \frac{9}{20} = 0.45\)
\(\theta = \tan^{-1} (0.45) \)
= 24.23°
\(\therefore\) The bearing of Y from X = 180° - 24.23°
= 155.77°
= 156° (to the nearest degree)
There is an explanation video available below.
44.

If \(P = (\frac{Q(R - T)}{15})^{\frac{1}{3}}\), make T the subject of the formula.

A. \(T = \frac{15R - Q}{P^3}\)

B. \(T = R - \frac{15P^3}{Q}\)

C. \(T = \frac{R - 15P^3}{Q}\)

D. \(T = \frac{R + P^3}{15Q}\)

Detailed Solution

\(P = (\frac{Q(R - T)}{15})^{\frac{1}{3}}\)
\(P^3 = \frac{Q(R - T)}{15}\)
\(Q(R - T) = 15P^3\)
\(R - T = \frac{15P^3}{Q}\)
\(T = R - \frac{15P^3}{Q}\)
There is an explanation video available below.
45.

In the diagram above, O is the centre of the circle ABC, < ABO = 26° and < BOC = 130°. Calculate < AOC.

A. 26°

B. 13°

C. 80°

D. 102°

Detailed Solution


< BAC = \(\frac{130}{2}\) (angle subtended at the centre)
< BAC = 65°
Also, x = 26° (theorem)
y = 65° - 26° = 39°
< AOC = 180° - (39° + 39°)
= 102°
There is an explanation video available below.
46.

Each of the interior angles of a regular polygon is 140°. Calculate the sum of all the interior angles of the polygon.

A. 1080°

B. 1260°

C. 2160°

D. 1800°

Detailed Solution

Since each interior angle = 140°;
Each exterior angle = 180° - 140° = 40°
Number of sides of the polygon = \(\frac{360°}{40°}\)
= 9
Sum of angles in the polygon = 140° x 9
= 1260°
There is an explanation video available below.
47.

A man bought a car newly for ₦1,250,000. He had a crash with the car and later sold it at the rate of ₦1,085,000. What is the percentage gain or loss of the man?

A. 43.7% loss

B. 13.2% gain

C. 13.2% loss

D. 43.7% gain

Detailed Solution

Cost price of the car = N 1,250.00
Selling price = N 1,085.00
Loss = N (1250 - 1085)
= N 165.00
% loss = \(\frac{165}{1250} \times 100%\)
= 13.2% loss
There is an explanation video available below.
48.

If the volume of a frustrum is given as \(V = \frac{\pi h}{3} (R^2 + Rr + r^2)\), find \(\frac{\mathrm d V}{\mathrm d R}\).

A. \(\frac{\pi h}{3} (2R + r)\)

B. \(2R + r + \frac{\pi h}{3}\)

C. \(\frac{\pi h}{3} (2R^2 + r + 2r)\)

D. \(\frac{2R^2}{3} \pi h\)

Detailed Solution

\(V = \frac{\pi h}{3} (R^2 + Rr + r^2)\)
\(V = \frac{\pi R^2 h}{3} + \frac{\pi Rr h}{3} + \frac{\pi r^2 h}{3}\)
\(\frac{\mathrm d V}{\mathrm d R} = \frac{2 \pi R h}{3} + \frac{\pi r h}{3}\)
= \(\frac{\pi}{3} (2R + r)\)
There is an explanation video available below.
49.

Express \((0.0439 \div 3.62)\) as a fraction.

A. \(\frac{21}{100}\)

B. \(\frac{21}{1000}\)

C. \(\frac{12}{1000}\)

D. \(\frac{12}{100}\)

Detailed Solution

\((0.0439 \div 3.62)\)
= 0.01213
\(\approxeq\) 0.012
= \(\frac{12}{1000}\)
There is an explanation video available below.
50.

If \(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\), find the value of x.

A. x = -4

B. x = 2

C. x = -2

D. x = 4

Detailed Solution

\(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\)
\((5^2)^{(1 - x)} \times 5^{(x + 2)} \div (5^{-3})^x = (5^4)^{-1}\)
\(5^{2 - 2x} \times 5^{x + 2} \div 5^{-3x} = 5^{-4}\)
\(5^{(2 - 2x) + (x + 2) - (-3x)} = 5^{-4}\)
Equating bases, we have
\(2 - 2x + x + 2 + 3x = -4\)
\(4 + 2x = -4 \implies 2x = -4 - 4\)
\(2x = -8\)
\(x = -4\)
There is an explanation video available below.
41.

Simplify \(\frac{0.0839 \times 6.381}{5.44}\) to 2 significant figures.

A. 0.2809

B. 2.51

C. 3.5

D. 0.098

Detailed Solution

There is an explanation video available below.
42.

Find the value of x and y in the simultaneous equation: 3x + y = 21; xy = 30

A. x = 3 or 7, y = 12 or 8

B. x = 6 or 1, y = 11 or 5

C. x = 2 or 5, y = 15 or 6

D. x = 1 or 5, y = 10 or 7

Detailed Solution

3x + y = 21 ... (i);
xy = 30 ... (ii)
From (ii), \(y = \frac{30}{x}\). Putting the value of y in (i), we have
3x + \(\frac{30}{x}\) = 21
\(\implies\) 3x\(^2\) + 30 = 21x
3x\(^2\) - 21x + 30 = 0
3x\(^2\) - 15x - 6x + 30 = 0
3x(x - 5) - 6(x - 5) = 0
(3x - 6)(x - 5) = 0
3x - 6 = 0 \(\implies\) x = 2.
x - 5 = 0 \(\implies\) x = 5.
If x = 2, y = \(\frac{30}{2}\) = 15;
If x = 5, y = \(\frac{30}{5}\) = 6.
There is an explanation video available below.
43.

Points X and Y are 20km North and 9km East of point O, respectively. What is the bearing of Y from X? Correct to the nearest degree.

A. 24°

B. 56°

C. 127°

D. 156°

Detailed Solution


\(\tan \theta = \frac{9}{20} = 0.45\)
\(\theta = \tan^{-1} (0.45) \)
= 24.23°
\(\therefore\) The bearing of Y from X = 180° - 24.23°
= 155.77°
= 156° (to the nearest degree)
There is an explanation video available below.
44.

If \(P = (\frac{Q(R - T)}{15})^{\frac{1}{3}}\), make T the subject of the formula.

A. \(T = \frac{15R - Q}{P^3}\)

B. \(T = R - \frac{15P^3}{Q}\)

C. \(T = \frac{R - 15P^3}{Q}\)

D. \(T = \frac{R + P^3}{15Q}\)

Detailed Solution

\(P = (\frac{Q(R - T)}{15})^{\frac{1}{3}}\)
\(P^3 = \frac{Q(R - T)}{15}\)
\(Q(R - T) = 15P^3\)
\(R - T = \frac{15P^3}{Q}\)
\(T = R - \frac{15P^3}{Q}\)
There is an explanation video available below.
45.

In the diagram above, O is the centre of the circle ABC, < ABO = 26° and < BOC = 130°. Calculate < AOC.

A. 26°

B. 13°

C. 80°

D. 102°

Detailed Solution


< BAC = \(\frac{130}{2}\) (angle subtended at the centre)
< BAC = 65°
Also, x = 26° (theorem)
y = 65° - 26° = 39°
< AOC = 180° - (39° + 39°)
= 102°
There is an explanation video available below.
46.

Each of the interior angles of a regular polygon is 140°. Calculate the sum of all the interior angles of the polygon.

A. 1080°

B. 1260°

C. 2160°

D. 1800°

Detailed Solution

Since each interior angle = 140°;
Each exterior angle = 180° - 140° = 40°
Number of sides of the polygon = \(\frac{360°}{40°}\)
= 9
Sum of angles in the polygon = 140° x 9
= 1260°
There is an explanation video available below.
47.

A man bought a car newly for ₦1,250,000. He had a crash with the car and later sold it at the rate of ₦1,085,000. What is the percentage gain or loss of the man?

A. 43.7% loss

B. 13.2% gain

C. 13.2% loss

D. 43.7% gain

Detailed Solution

Cost price of the car = N 1,250.00
Selling price = N 1,085.00
Loss = N (1250 - 1085)
= N 165.00
% loss = \(\frac{165}{1250} \times 100%\)
= 13.2% loss
There is an explanation video available below.
48.

If the volume of a frustrum is given as \(V = \frac{\pi h}{3} (R^2 + Rr + r^2)\), find \(\frac{\mathrm d V}{\mathrm d R}\).

A. \(\frac{\pi h}{3} (2R + r)\)

B. \(2R + r + \frac{\pi h}{3}\)

C. \(\frac{\pi h}{3} (2R^2 + r + 2r)\)

D. \(\frac{2R^2}{3} \pi h\)

Detailed Solution

\(V = \frac{\pi h}{3} (R^2 + Rr + r^2)\)
\(V = \frac{\pi R^2 h}{3} + \frac{\pi Rr h}{3} + \frac{\pi r^2 h}{3}\)
\(\frac{\mathrm d V}{\mathrm d R} = \frac{2 \pi R h}{3} + \frac{\pi r h}{3}\)
= \(\frac{\pi}{3} (2R + r)\)
There is an explanation video available below.
49.

Express \((0.0439 \div 3.62)\) as a fraction.

A. \(\frac{21}{100}\)

B. \(\frac{21}{1000}\)

C. \(\frac{12}{1000}\)

D. \(\frac{12}{100}\)

Detailed Solution

\((0.0439 \div 3.62)\)
= 0.01213
\(\approxeq\) 0.012
= \(\frac{12}{1000}\)
There is an explanation video available below.
50.

If \(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\), find the value of x.

A. x = -4

B. x = 2

C. x = -2

D. x = 4

Detailed Solution

\(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\)
\((5^2)^{(1 - x)} \times 5^{(x + 2)} \div (5^{-3})^x = (5^4)^{-1}\)
\(5^{2 - 2x} \times 5^{x + 2} \div 5^{-3x} = 5^{-4}\)
\(5^{(2 - 2x) + (x + 2) - (-3x)} = 5^{-4}\)
Equating bases, we have
\(2 - 2x + x + 2 + 3x = -4\)
\(4 + 2x = -4 \implies 2x = -4 - 4\)
\(2x = -8\)
\(x = -4\)
There is an explanation video available below.