Paper 1 | Objectives | 51 Questions
JAMB Exam
Year: 1993
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
Past questions are effective for revisions for all tests including WAEC, BECE, SAT, TOEFL, GCSE, IELTS
Tips to make the best study space and quality time for studies are essential.
DAAD scholarship to assist Sub-Saharan African students fleeing war in Ukraine to complete their studies
# | Question | Ans |
---|---|---|
1. |
Integrate \(\frac{1 - x}{x^3}\) with respect to x A. \(\frac{x - x^2}{x^4}\) + k B. \(\frac{4}{x^4} - \frac{3 + k}{x^3}\) C. \(\frac{1}{x} - \frac{1}{2x^2}\) + k D. \(\frac{1}{3x^2} - \frac{1}{2x}\) + k
Show Content
Detailed Solution\(\int \frac{1 - x}{x^3}\)= \(\int^{1}_{x^3} - \int^{x}_{x^3}\) = x-3 dx - x-2dx = \(\frac{1}{2x^2} + \frac{1}{x}\) |
|
2. |
Change 7110 to base 8 A. 1078 B. 1068 C. 718 D. 178
Show Content
Detailed Solution\(\begin{array}{c|c} 8 & 71 \\ 8 & 8 \text{rem} 7\\ 8 & 1 \text{rem} 0\end{array}\)= 1078 |
|
3. |
Evaluate \(\frac{3524}{0.05}\) correct to 3 significant figures A. 705 B. 70,000 C. 70, 480 D. 70, 500
Show Content
Detailed Solution\(\frac{3524}{0.05}\) = 70480\(\approx\) 70500(3 s.g) |
|
4. |
If 9(x - \(\frac{1}{2}\)) 3x2 A. \(\frac{1}{2}\) B. 1 C. 2 D. 3
Show Content
Detailed Solution9(x - \(\frac{1}{2}\)) 3x2 = 32(x - \(\frac{1}{2}\)) = 3x2∴ 2(x - \(\frac{1}{2}\)) = x2 2x - 1 = x2 hence x2 - 2x + 1 = 0 (x - 1)(x - 1) = 0 x = 1 |
|
5. |
Solve for y in the equation 10^1 x 5(2y - 2) x 4(y - 1) = 1 A. \(\frac{3}{4}\) B. \(\frac{5}{4}\) C. \(\frac{2}{3}\) D. 5
Show Content
Detailed Solution10y x 5(2y - 2) x 4(y - 1) = 1but 10y - (5 x 2)y = 5y x 2y = (Law of indices) 5y x 2y x 5(2y - 2) x 4(y - 1) = 1 but 4(y - 1) = 22(y - 1) = 2y - 2 (Law of indices) 5y x 5(2y -2) x 2(- 2) = 1 5(3y -2) x 2y x 2(2y -2) = 1 = 5(3y -2) x 2(3y -2) = 1 But ao = 1 10(3y -2) = 10o 3y - 2 = 0 ∴ y = \(\frac{2}{3}\) |
|
6. |
Simplify \(\frac{1}{√3 - 2}\) - \(\frac{1}{√3 + 2}\) A. 3 B. \(\frac{2}{3}\) C. 7 D. -4
Show Content
Detailed Solution\(\frac{1}{√3 - 2}\) - \(\frac{1}{√3 + 2}\)L.C.M = (3- 2) (3 + 2) ∴ \(\frac{1}{\sqrt{3 - 2}}\) - \(\frac{1}{\sqrt{3 - 2}}\) = \(\frac{\sqrt{3 + 2} - \sqrt{3 - 2}}{\sqrt{3 - 2} + \sqrt{3 - 2}}\) \(\frac{√3 + 2 - √3 + 2}{3 - 2√3 + 2√3 - 4}\) = \(\frac{4}{3 - 2}\) = \(\frac{4}{-1}\) = -4 |
|
7. |
If 2log3 y + log3 x2 = 4, then y is A. 4 - log3 B. \(\frac{4}{log_3 x}\) C. \(\frac{4}{x}\) D. \(\pm\) \(\frac{9}{x}\)
Show Content
Detailed Solution2log3y + log3x2 = 4log3y2 + log3x2 = 4 ∴ log3 (x2y2) = log381(correct all to base 4) x2y2 = 81 ∴ xy = \(\pm\)9 ∴ y = \(\pm\)\(\frac{9}{x}\) |
|
8. |
Solve without using tables log5(62.5) - log5(\(\frac{1}{2}\)) A. 3 B. 4 C. 5 D. 8
Show Content
Detailed Solutionlog5(62.5) - log5(\(\frac{1}{2}\))= log5\(\frac{(62.5)}{\frac{1}{2}}\) - log5(2 x 62.5) = log5(125) = log553 - 3log55 = 3 |
|
9. |
If N225.00 yields N27.00 in x years simple interest at the rate of 4% per annum, find x A. 3 B. 4 C. 12 D. 17
Show Content
Detailed SolutionPrincipal = N255.00, Interest = 27.00year = x Rate: 4% ∴ 1 = \(\frac{PRT}{100}\) 27 = \(\frac{225 \times 4 \times T}{100}\) 2700 = 900T T = 3 years |
|
10. |
If \(\sqrt{x^2 + 9}\) = x + 1, solve for x A. 5 B. 4 C. 3 D. 2 E. 1
Show Content
Detailed Solution\(\sqrt{x^2 + 9}\) = x + 1x2 + 9 = (x + 1)2 + 1 0 = x2 + 2x + 1 - x2 - 9 = 2x - 8 = 0 2(x - 4) = 0 x = 4 |
|
11. |
Make x the subject of the relation \(\frac{1 + ax}{1 - ax}\) = \(\frac{p}{q}\) A. \(\frac{p + q}{a(p - q)}\) B. \(\frac{p - q}{a(p + q)}\) C. \(\frac{p - q}{apq}\) D. \(\frac{pq}{a(p - q)}\)
Show Content
Detailed Solution\(\frac{1 + ax}{1 - ax}\) = \(\frac{p}{q}\) by cross multiplication,q(1 + ax) = p(1 - ax) q + qax = p - pax qax + pax = p - q ∴ x = \(\frac{p - q}{a(p + q)}\) |
Preview displays only 11 out of the 51 Questions