Year : 
2013
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

11 - 20 of 48 Questions

# Question Ans
11.

If x = 64 and y = 27, evaluate: \(\frac{x^{\frac{1}{2}} - y^{\frac{1}{3}}}{y - x^{\frac{2}{3}}}\)

A. 2\(\frac{1}{5}\)

B. 1

C. \(\frac{5}{11}\)

D. \(\frac{11}{43}\)

Detailed Solution

\(\frac{x^{\frac{1}{2}} - y^{\frac{1}{3}}}{y - x^{\frac{2}{3}}}\)

substitute x = 64 and y = 27

\(\frac{64^{\frac{1}{2}} - 27^{\frac{1}{3}}}{27 - 64^{\frac{2}{3}}} = \frac{\sqrt{64} - 3\sqrt{27}}{27 - (3\sqrt{64})^2}\)

= \(\frac{8 - 3}{27 - 16}\)

= \(\frac{5}{11}\)
12.

If \(\frac{1}{2}\)x + 2y = 3 and \(\frac{3}{2}\)x and \(\frac{3}{2}\)x - 2y = 1, find (x + y)

A. 3

B. 2

C. 1

D. 5

Detailed Solution

\(\frac{1}{2}\)x + 2y = 3......(i)(multiply by 2)

\(\frac{3}{2}\)x - 2y = 1......(ii)(multiply by 2)

x + 4y = 6......(iii)

3x - 4y = 2.....(iv) add (iii) and (iv)

4x = 8, x = \(\frac{8}{4}\) = 2

substitute x = 2 into equation (iii)

x + 4y = 6

2 + 4y = 6

4y = 6 - 2

4y = 4

y = \(\frac{4}{4}\)

= 1(x + y)

2 + 1 = 3
13.

Given that p\(\frac{1}{3}\) = \(\frac{3\sqrt{q}}{r}\), make q the subject of the equation

A. q = p\(\sqrt{r}\)

B. q = p3r

C. q = pr3

D. q = pr\(\frac{1}{3}\)

Detailed Solution

p\(\frac{1}{3}\) = \(\frac{3\sqrt{q}}{r}\)(cross multiply)

3\(\sqrt{q}\) = r x 3\(\frac{\sqrt{q}}{r}\)(cross multiply)

3\(\sqrt{q}\) = r x 3\(\sqrt{p}\) cube root both side

q = 3\(\sqrt{r}\) x p

q = r\(\frac{1}{3}\)p = pr\(\frac{1}{3}\)
14.

A chord is 2cm from the centre of a circle. If the radius of the circle is 5cm, find the length of the chord

A. 2\(\sqrt{21}\)cm

B. \(\sqrt{42}\)cm

C. 2\(\sqrt{19}\)cm

D. \(\sqrt{21}\)cm

Detailed Solution

From \(\bigtriangleup\) OMQ find /MQ/ by Pythagoras OQ2 = OM2 + MQ2

52 = 22 + MQ2

25 = 4 + MQ2

25 - 4 = MQ2

21 - MQ2

MQ2 = 21

MQ2 = \(\sqrt{21}\)

Length of chord = 2 x \(\sqrt{21}\) = 2\(\sqrt{21}\)cm
15.

A cube and cuboid have the same base area. The volume of the cube is 64cm\(^3\) while that of the cuboid is 80cm\(^3\). Find the height of the cuboid

A. 1cm

B. 3cm

C. 5cm

D. 6cm

Detailed Solution

Volume of a cube with side a cm = a\(^3\)
a\(^3\) = 64 \(\implies\) a = 4cm
Base area of a cube = a\(^2\)
= 4\(^2\)
= 16 cm\(^2\)
\(\implies\) Base area of the cuboid = 16 cm\(^2\)
Volume of cuboid = Base area x height
80 = 16 x h
h = \(\frac{80}{16}\)
= 5 cm
16.

If sin x = \(\frac{5}{13}\) and 0o \(\leq\) x \(\leq\) 90o, find the value of (cos x - tan x)

A. \(\frac{7}{13}\)

B. \(\frac{12}{13}\)

C. \(\frac{79}{156}\)

D. \(\frac{209}{156}\)

Detailed Solution

Sin x = \(\frac{5}{13}\)

0o \(\leq\) x \(\leq\) 90o, (cos x - tan x)

AC2 = AB2 + BC2

132 = 52 + BC2

169 - 25 + BC2

169 - 25 = BC2

144 = BC2

Cos x = \(\frac{Adj}{Hyp}\) = \(\frac{12}{13}\)

BC = \(\sqrt{144}\)

BC = 12

tan x = \(\frac{opp}{adj} = \frac{5}{12}\)

BC
17.

An object is 6m away from the base of a mast. The angle of depression of the object from the top pf the mast is 50o, Find, correct to 2 decimal places, the height of the mast

A. 8.60m

B. 7.51m

C. 7.15m

D. 1.19m

Detailed Solution

Tan 50o = \(\frac{h}{6}\)

h = 6 tan 50

= 6 x 1.1917

= 7.1505

= 7.15
18.

The bearing of Y from X is 060o and the bearing of Z from Y = 060o. Find the bearing of X from Z

A. 300o

B. 240o

C. 180o

D. 120o

B

19.

Which of the following is not a probability of Mary scoring 85% in a mathematics test?

A. 0.15

B. 0.57

C. 0.94

D. 1.01

Detailed Solution

The probability not scoring 85% is = 1 - pro(scoring 85%)

= 1 - \(\frac{85}{100}\) = 1 - 0.85

= 0.15

not scoring would be less than 1
20.

If 2 log x (3\(\frac{3}{8}\)) = 6, find the value of x

A. \(\frac{3}{2}\)

B. \(\frac{4}{3}\)

C. \(\frac{2}{3}\)

D. \(\frac{1}{2}\)

Detailed Solution

2 log x (3\(\frac{3}{8}\)) = 6(divide both sides by 2)

\(\frac{2 log_x(3 \frac{3}{8})}{2} = \frac{6}{2}\)

\(\log_x \frac{27}{8} = 3\)

\(\frac{27}{8} = x^3\)

\(x^3 = \frac{27}{8}\)

x = \(\sqrt{\frac{27}{8}}\)

= (\(\frac{27}{8}\))\(\frac{1}{3}\)

= \(\frac{(3^3)^{\frac{1}{3}}}{(2^3)^{\frac{1}{3}}}\)

= \(\frac{3}{2}\)
11.

If x = 64 and y = 27, evaluate: \(\frac{x^{\frac{1}{2}} - y^{\frac{1}{3}}}{y - x^{\frac{2}{3}}}\)

A. 2\(\frac{1}{5}\)

B. 1

C. \(\frac{5}{11}\)

D. \(\frac{11}{43}\)

Detailed Solution

\(\frac{x^{\frac{1}{2}} - y^{\frac{1}{3}}}{y - x^{\frac{2}{3}}}\)

substitute x = 64 and y = 27

\(\frac{64^{\frac{1}{2}} - 27^{\frac{1}{3}}}{27 - 64^{\frac{2}{3}}} = \frac{\sqrt{64} - 3\sqrt{27}}{27 - (3\sqrt{64})^2}\)

= \(\frac{8 - 3}{27 - 16}\)

= \(\frac{5}{11}\)
12.

If \(\frac{1}{2}\)x + 2y = 3 and \(\frac{3}{2}\)x and \(\frac{3}{2}\)x - 2y = 1, find (x + y)

A. 3

B. 2

C. 1

D. 5

Detailed Solution

\(\frac{1}{2}\)x + 2y = 3......(i)(multiply by 2)

\(\frac{3}{2}\)x - 2y = 1......(ii)(multiply by 2)

x + 4y = 6......(iii)

3x - 4y = 2.....(iv) add (iii) and (iv)

4x = 8, x = \(\frac{8}{4}\) = 2

substitute x = 2 into equation (iii)

x + 4y = 6

2 + 4y = 6

4y = 6 - 2

4y = 4

y = \(\frac{4}{4}\)

= 1(x + y)

2 + 1 = 3
13.

Given that p\(\frac{1}{3}\) = \(\frac{3\sqrt{q}}{r}\), make q the subject of the equation

A. q = p\(\sqrt{r}\)

B. q = p3r

C. q = pr3

D. q = pr\(\frac{1}{3}\)

Detailed Solution

p\(\frac{1}{3}\) = \(\frac{3\sqrt{q}}{r}\)(cross multiply)

3\(\sqrt{q}\) = r x 3\(\frac{\sqrt{q}}{r}\)(cross multiply)

3\(\sqrt{q}\) = r x 3\(\sqrt{p}\) cube root both side

q = 3\(\sqrt{r}\) x p

q = r\(\frac{1}{3}\)p = pr\(\frac{1}{3}\)
14.

A chord is 2cm from the centre of a circle. If the radius of the circle is 5cm, find the length of the chord

A. 2\(\sqrt{21}\)cm

B. \(\sqrt{42}\)cm

C. 2\(\sqrt{19}\)cm

D. \(\sqrt{21}\)cm

Detailed Solution

From \(\bigtriangleup\) OMQ find /MQ/ by Pythagoras OQ2 = OM2 + MQ2

52 = 22 + MQ2

25 = 4 + MQ2

25 - 4 = MQ2

21 - MQ2

MQ2 = 21

MQ2 = \(\sqrt{21}\)

Length of chord = 2 x \(\sqrt{21}\) = 2\(\sqrt{21}\)cm
15.

A cube and cuboid have the same base area. The volume of the cube is 64cm\(^3\) while that of the cuboid is 80cm\(^3\). Find the height of the cuboid

A. 1cm

B. 3cm

C. 5cm

D. 6cm

Detailed Solution

Volume of a cube with side a cm = a\(^3\)
a\(^3\) = 64 \(\implies\) a = 4cm
Base area of a cube = a\(^2\)
= 4\(^2\)
= 16 cm\(^2\)
\(\implies\) Base area of the cuboid = 16 cm\(^2\)
Volume of cuboid = Base area x height
80 = 16 x h
h = \(\frac{80}{16}\)
= 5 cm
16.

If sin x = \(\frac{5}{13}\) and 0o \(\leq\) x \(\leq\) 90o, find the value of (cos x - tan x)

A. \(\frac{7}{13}\)

B. \(\frac{12}{13}\)

C. \(\frac{79}{156}\)

D. \(\frac{209}{156}\)

Detailed Solution

Sin x = \(\frac{5}{13}\)

0o \(\leq\) x \(\leq\) 90o, (cos x - tan x)

AC2 = AB2 + BC2

132 = 52 + BC2

169 - 25 + BC2

169 - 25 = BC2

144 = BC2

Cos x = \(\frac{Adj}{Hyp}\) = \(\frac{12}{13}\)

BC = \(\sqrt{144}\)

BC = 12

tan x = \(\frac{opp}{adj} = \frac{5}{12}\)

BC
17.

An object is 6m away from the base of a mast. The angle of depression of the object from the top pf the mast is 50o, Find, correct to 2 decimal places, the height of the mast

A. 8.60m

B. 7.51m

C. 7.15m

D. 1.19m

Detailed Solution

Tan 50o = \(\frac{h}{6}\)

h = 6 tan 50

= 6 x 1.1917

= 7.1505

= 7.15
18.

The bearing of Y from X is 060o and the bearing of Z from Y = 060o. Find the bearing of X from Z

A. 300o

B. 240o

C. 180o

D. 120o

B

19.

Which of the following is not a probability of Mary scoring 85% in a mathematics test?

A. 0.15

B. 0.57

C. 0.94

D. 1.01

Detailed Solution

The probability not scoring 85% is = 1 - pro(scoring 85%)

= 1 - \(\frac{85}{100}\) = 1 - 0.85

= 0.15

not scoring would be less than 1
20.

If 2 log x (3\(\frac{3}{8}\)) = 6, find the value of x

A. \(\frac{3}{2}\)

B. \(\frac{4}{3}\)

C. \(\frac{2}{3}\)

D. \(\frac{1}{2}\)

Detailed Solution

2 log x (3\(\frac{3}{8}\)) = 6(divide both sides by 2)

\(\frac{2 log_x(3 \frac{3}{8})}{2} = \frac{6}{2}\)

\(\log_x \frac{27}{8} = 3\)

\(\frac{27}{8} = x^3\)

\(x^3 = \frac{27}{8}\)

x = \(\sqrt{\frac{27}{8}}\)

= (\(\frac{27}{8}\))\(\frac{1}{3}\)

= \(\frac{(3^3)^{\frac{1}{3}}}{(2^3)^{\frac{1}{3}}}\)

= \(\frac{3}{2}\)