Year : 
2006
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

11 - 20 of 46 Questions

# Question Ans
11.

The ratio of boys to girls in a class is 5:3. Find the probability of selecting at random, a girl from the class

A. \(\frac{1}{8}\)

B. \(\frac{1}{3}\)

C. \(\frac{3}{8}\)

D. \(\frac{3}{5}\)

Detailed Solution

ratio of boys to girls = 5:3

total = 5 + 3 = 8

Pr(girl) = \(\frac{3}{8}\)
12.

\(\begin{array}{c|c} x & 1 & 4 & p \\ \hline y & 0.5 & 1 & 2.5\end{array}\). The table above satisfies the relation y = k\(\sqrt{x}\), where k is a positive constant. Find the value of K.

A. 0.5

B. 1

C. 1.5

D. 2

Detailed Solution

y = k\(\sqrt{x}\) when y = 1, x = 4

k = \(\frac{y}{\sqrt{x}}\)

= \(\frac{1}{\sqrt{4}}\)

= \(\frac{1}{2}\)

= 0.5
13.

\(\begin{array}{c|c} x & 1 & 4 & p \\ \hline y & 0.5 & 1 & 2.5\end{array}\). The table below satisfies the relation y - k\(\sqrt{x}\), where k is a positive constant. Find the value of P,

A. 2

B. 4

C. 10

D. 25

Detailed Solution

From y = \(\frac{1}{2} \sqrt{x}\)

when y = 2.5 or \(\frac{5}{2}\), x = P

\(\frac{5}{2} \times \frac{1}{2} \sqrt{P}\)

\(\sqrt{P} = \frac{10}{2} = 5\)

P = 52

= 25
14.

What must be added to x2 - 3x to make it a perfect square?

A. \(\frac{9}{4}\)

B. \(\frac{9}{2}\)

C. 6

D. 9

Detailed Solution

x2 - 3x + k(perfect square)

k = (-\(\frac{3}{2}\))2 ; k = \(\frac{9}{4}\)
15.

Given that (2x - 1)(x + 5) = 2x2 - mx - 5, what is the value of m

A. 11

B. 5

C. -9

D. -10

Detailed Solution

(2x - 1)(x + 5) = 2x2 - mx - 5

2x2 + 10x - x - 5

= 2x2 + 9x - 5 = 2x2 - mx - 5

comparing the co-efficient of x

-m = 9

m = -9
16.

What is the place value of 9 in the number 3.0492?

A. \(\frac{9}{10000}\)

B. \(\frac{9}{1000}\)

C. \(\frac{9}{100}\)

D. \(\frac{9}{10}\)

Detailed Solution

Place value of 9 in 3.0492

= 0.009

= \(\frac{9}{1000}\)
17.

If the simple interest on a sum of money invested at 3% per annum for 2\(\frac{1}{2}\) years is N123, find the principal.

A. N676.50

B. N820

C. N1,640

D. N4,920

Detailed Solution

I = N123; R = 3%' T = 2\(\frac{1}{2}\) yrs; P = \(\frac{100 \times 1}{RT}\)

P = \(\frac{100 \times 123}{3 \times 2.5}\)

principal(P) = N1640
18.

A machine valued at N20,000 depreciates by 10% every year. What will be the value of the machine at the end of two years?

A. N16,200

B. N1,4,200

C. 12,000

D. 8000.

Detailed Solution

D = P(I - \(\frac{R}{100}\))n where P = N20,000; R = 10%, n = 2

D = 20,000(I - \(\frac{10}{100}\))2

= 20000(0.9)2

20,000 x 0.81 = N16,200
19.

If 2x + y = 10, and y \(\neq\) 0, which of the following is not a possible value of x?

A. 4

B. 5

C. 8

D. 10

Detailed Solution

The value for which the equation is impossible

2x = 10 (if y = 0)

x = 5
20.

If x + y = 12 and 3x - y = 20, find the value of 2x - y

A. 8

B. 10

C. 12

D. 15

Detailed Solution

x + y = 12
+ 3x - y = 20
---------------
4x = 32

x = 8

x + y = 12; 8 + y = 12; y = 12 - 8

= 4

2x - y = 2(8) - 4; 16 - 4 = 12
11.

The ratio of boys to girls in a class is 5:3. Find the probability of selecting at random, a girl from the class

A. \(\frac{1}{8}\)

B. \(\frac{1}{3}\)

C. \(\frac{3}{8}\)

D. \(\frac{3}{5}\)

Detailed Solution

ratio of boys to girls = 5:3

total = 5 + 3 = 8

Pr(girl) = \(\frac{3}{8}\)
12.

\(\begin{array}{c|c} x & 1 & 4 & p \\ \hline y & 0.5 & 1 & 2.5\end{array}\). The table above satisfies the relation y = k\(\sqrt{x}\), where k is a positive constant. Find the value of K.

A. 0.5

B. 1

C. 1.5

D. 2

Detailed Solution

y = k\(\sqrt{x}\) when y = 1, x = 4

k = \(\frac{y}{\sqrt{x}}\)

= \(\frac{1}{\sqrt{4}}\)

= \(\frac{1}{2}\)

= 0.5
13.

\(\begin{array}{c|c} x & 1 & 4 & p \\ \hline y & 0.5 & 1 & 2.5\end{array}\). The table below satisfies the relation y - k\(\sqrt{x}\), where k is a positive constant. Find the value of P,

A. 2

B. 4

C. 10

D. 25

Detailed Solution

From y = \(\frac{1}{2} \sqrt{x}\)

when y = 2.5 or \(\frac{5}{2}\), x = P

\(\frac{5}{2} \times \frac{1}{2} \sqrt{P}\)

\(\sqrt{P} = \frac{10}{2} = 5\)

P = 52

= 25
14.

What must be added to x2 - 3x to make it a perfect square?

A. \(\frac{9}{4}\)

B. \(\frac{9}{2}\)

C. 6

D. 9

Detailed Solution

x2 - 3x + k(perfect square)

k = (-\(\frac{3}{2}\))2 ; k = \(\frac{9}{4}\)
15.

Given that (2x - 1)(x + 5) = 2x2 - mx - 5, what is the value of m

A. 11

B. 5

C. -9

D. -10

Detailed Solution

(2x - 1)(x + 5) = 2x2 - mx - 5

2x2 + 10x - x - 5

= 2x2 + 9x - 5 = 2x2 - mx - 5

comparing the co-efficient of x

-m = 9

m = -9
16.

What is the place value of 9 in the number 3.0492?

A. \(\frac{9}{10000}\)

B. \(\frac{9}{1000}\)

C. \(\frac{9}{100}\)

D. \(\frac{9}{10}\)

Detailed Solution

Place value of 9 in 3.0492

= 0.009

= \(\frac{9}{1000}\)
17.

If the simple interest on a sum of money invested at 3% per annum for 2\(\frac{1}{2}\) years is N123, find the principal.

A. N676.50

B. N820

C. N1,640

D. N4,920

Detailed Solution

I = N123; R = 3%' T = 2\(\frac{1}{2}\) yrs; P = \(\frac{100 \times 1}{RT}\)

P = \(\frac{100 \times 123}{3 \times 2.5}\)

principal(P) = N1640
18.

A machine valued at N20,000 depreciates by 10% every year. What will be the value of the machine at the end of two years?

A. N16,200

B. N1,4,200

C. 12,000

D. 8000.

Detailed Solution

D = P(I - \(\frac{R}{100}\))n where P = N20,000; R = 10%, n = 2

D = 20,000(I - \(\frac{10}{100}\))2

= 20000(0.9)2

20,000 x 0.81 = N16,200
19.

If 2x + y = 10, and y \(\neq\) 0, which of the following is not a possible value of x?

A. 4

B. 5

C. 8

D. 10

Detailed Solution

The value for which the equation is impossible

2x = 10 (if y = 0)

x = 5
20.

If x + y = 12 and 3x - y = 20, find the value of 2x - y

A. 8

B. 10

C. 12

D. 15

Detailed Solution

x + y = 12
+ 3x - y = 20
---------------
4x = 32

x = 8

x + y = 12; 8 + y = 12; y = 12 - 8

= 4

2x - y = 2(8) - 4; 16 - 4 = 12