Year : 
2007
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 47 Questions

# Question Ans
21.

A binary operation Δ is defined by aΔb = a + b + 1 for any numbers a and b. Find the inverse of the real number 7 under the operation Δ, if the identity element is -1

A. -7

B. -9

C. 5

D. 9

Detailed Solution

a*e = a + e + 1 = a
implies e+ 1 = 0
∴ e = -1
7 * e = -1
∴ a + 7 + 1 = -1
a + 8 = -1
a+8 = -1
a = -1-8
a = -9
22.

The nth term of the sequence 3/2, 3, 7, 16, 35, 74 ..... is

A. 2n-2 - n

B. 2n-2 - (n+1) / 2

C. 2n-2

D. 3/2 n

Detailed Solution

3/2, 3, 7, 16, 35, 74, ....
Using the method of substitution
When n = 1, 5 . 2n-2 - 1 = 5 . 21-2 - 1
= 5 x 2-1 - 1
= 5 x 1/2 - 1
= 5/2 - 1 = 3/2
When n = 1, 5 . 2n-2 - n
= 5 . 22-2 - 2
= 5 x 20 - 2
= 5 x 1 – 2 = 3
When n = 3, 5 . 2n-2 - n
= 5 . 23-2 - 3
=
23.

Find the sum to infinity of the series \(2+\frac{3}{2}+\frac{9}{8}+\frac{27}{32}+......\)

A. 1

B. 2

C. 8

D. 4

Detailed Solution

\(a=2\\
r = \frac{3}{4}\\
S = \frac{a}{1-r}\\
S= \frac{2}{1-\frac{3}{4}}\\
= \frac{2}{\frac{1}{4}}\\
S = \frac{2}{1}\times \frac{4}{1}\\
= 8\)
24.

Find y, if \(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\)

A. 5

B. 1

C. 7

D. 3

Detailed Solution

\(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\\
\sqrt{4\times 3}-\sqrt{49\times 3}+y\sqrt{3} = 0\\
2\sqrt{3}-7\sqrt{3}+y\sqrt{3} = 0\\
y\sqrt{3} = 7\sqrt{3} - 2\sqrt{3}\\
y=\frac{5\sqrt{3}}{\sqrt{3}}\\
y = 5\)
25.

If x10 = 12145 find x

A. 124

B. 121

C. 184

D. 180

Detailed Solution

x10 = 12145
= x10 = 1 x 53 + 2 x 52 + 1 * 51 + 4 x 50
= 1 x 125 + 2 x 25 + 1 x 5 + 4 x 1
= 125 + 50 + 5 + 4
= 184
26.

Evaluate \(\frac{(05652 - 04375)^2}{0.04}\) correct to three significant figures

A. 3.11

B. 3.13

C. 0.313

D. 3.12

Detailed Solution

\(\frac{(0.5652 - 0.4375)^2}{0.04}\\
\frac{(0.5625+0.4375)(0.5625-0.4375)}{0.04}\\
\frac{1.000\times 0.125}{0.04}\\
=3.125\\
=3.13\)
27.

Find the value of x for which 2(32x-1) = 162

A. 5/2

B. 3/2

C. 2/5

D. 1/2

Detailed Solution

2(32x-1) = 162
32x-1 = 162/2
32x-1 = 81
32x-1 = 32
2x - 1 = 4 (equating the indices)
2x = 5
5/2
x =
28.

Simplify \(\frac{3}{5} \div \left(\frac{2}{7} \times \frac{4}{3} \div \frac{4}{9}\right)\)

A. \(\frac{4}{5}\)

B. \(\frac{7}{10}\)

C. \(\frac{6}{6}\)

D. \(\frac{21}{6}\)

Detailed Solution

\(\frac{3}{5} \div \left(\frac{2}{7} \times \frac{4}{3} \div \frac{4}{9}\right)\\
=\frac{3}{5} \div \left(\frac{2}{7} \times \frac{4}{3} \times \frac{9}{4}\right)\\
=\frac{3}{5} \div \frac{6}{7}\\
=\frac{3}{5} \times \frac{7}{6}\\
=\frac{7}{10}\)
29.

If log102 = x, express log1012.5 in terms of x

A. 2(1 + x)

B. 2 + 3x

C. 2(1 - x)

D. 2 - 3x

Detailed Solution

log1012.5 = log10 121/2
= log1025/2
= log1025 - log102
= log1052 - log102
= 2log105 - log102
= 2log1010/2 - log102
= 2(1-x)- x
= 2 - 2x – x
= 2 – 3x
30.

A man made a profit of 5% when he sold an article for N60,000.00. How much would he have sell the article to make a profit of 26%

A. N68,000

B. N72,000

C. N65,000

D. N70,000

Detailed Solution

5% profit = 100 + 5 = 105%
26% profit = 100 + 26 = 126%
∴ 105% → N60,000
1% → 60000/15
126% = 1000/105 x 126/1
=N72,000
21.

A binary operation Δ is defined by aΔb = a + b + 1 for any numbers a and b. Find the inverse of the real number 7 under the operation Δ, if the identity element is -1

A. -7

B. -9

C. 5

D. 9

Detailed Solution

a*e = a + e + 1 = a
implies e+ 1 = 0
∴ e = -1
7 * e = -1
∴ a + 7 + 1 = -1
a + 8 = -1
a+8 = -1
a = -1-8
a = -9
22.

The nth term of the sequence 3/2, 3, 7, 16, 35, 74 ..... is

A. 2n-2 - n

B. 2n-2 - (n+1) / 2

C. 2n-2

D. 3/2 n

Detailed Solution

3/2, 3, 7, 16, 35, 74, ....
Using the method of substitution
When n = 1, 5 . 2n-2 - 1 = 5 . 21-2 - 1
= 5 x 2-1 - 1
= 5 x 1/2 - 1
= 5/2 - 1 = 3/2
When n = 1, 5 . 2n-2 - n
= 5 . 22-2 - 2
= 5 x 20 - 2
= 5 x 1 – 2 = 3
When n = 3, 5 . 2n-2 - n
= 5 . 23-2 - 3
=
23.

Find the sum to infinity of the series \(2+\frac{3}{2}+\frac{9}{8}+\frac{27}{32}+......\)

A. 1

B. 2

C. 8

D. 4

Detailed Solution

\(a=2\\
r = \frac{3}{4}\\
S = \frac{a}{1-r}\\
S= \frac{2}{1-\frac{3}{4}}\\
= \frac{2}{\frac{1}{4}}\\
S = \frac{2}{1}\times \frac{4}{1}\\
= 8\)
24.

Find y, if \(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\)

A. 5

B. 1

C. 7

D. 3

Detailed Solution

\(\sqrt{12}-\sqrt{147}+y\sqrt{3} = 0\\
\sqrt{4\times 3}-\sqrt{49\times 3}+y\sqrt{3} = 0\\
2\sqrt{3}-7\sqrt{3}+y\sqrt{3} = 0\\
y\sqrt{3} = 7\sqrt{3} - 2\sqrt{3}\\
y=\frac{5\sqrt{3}}{\sqrt{3}}\\
y = 5\)
25.

If x10 = 12145 find x

A. 124

B. 121

C. 184

D. 180

Detailed Solution

x10 = 12145
= x10 = 1 x 53 + 2 x 52 + 1 * 51 + 4 x 50
= 1 x 125 + 2 x 25 + 1 x 5 + 4 x 1
= 125 + 50 + 5 + 4
= 184
26.

Evaluate \(\frac{(05652 - 04375)^2}{0.04}\) correct to three significant figures

A. 3.11

B. 3.13

C. 0.313

D. 3.12

Detailed Solution

\(\frac{(0.5652 - 0.4375)^2}{0.04}\\
\frac{(0.5625+0.4375)(0.5625-0.4375)}{0.04}\\
\frac{1.000\times 0.125}{0.04}\\
=3.125\\
=3.13\)
27.

Find the value of x for which 2(32x-1) = 162

A. 5/2

B. 3/2

C. 2/5

D. 1/2

Detailed Solution

2(32x-1) = 162
32x-1 = 162/2
32x-1 = 81
32x-1 = 32
2x - 1 = 4 (equating the indices)
2x = 5
5/2
x =
28.

Simplify \(\frac{3}{5} \div \left(\frac{2}{7} \times \frac{4}{3} \div \frac{4}{9}\right)\)

A. \(\frac{4}{5}\)

B. \(\frac{7}{10}\)

C. \(\frac{6}{6}\)

D. \(\frac{21}{6}\)

Detailed Solution

\(\frac{3}{5} \div \left(\frac{2}{7} \times \frac{4}{3} \div \frac{4}{9}\right)\\
=\frac{3}{5} \div \left(\frac{2}{7} \times \frac{4}{3} \times \frac{9}{4}\right)\\
=\frac{3}{5} \div \frac{6}{7}\\
=\frac{3}{5} \times \frac{7}{6}\\
=\frac{7}{10}\)
29.

If log102 = x, express log1012.5 in terms of x

A. 2(1 + x)

B. 2 + 3x

C. 2(1 - x)

D. 2 - 3x

Detailed Solution

log1012.5 = log10 121/2
= log1025/2
= log1025 - log102
= log1052 - log102
= 2log105 - log102
= 2log1010/2 - log102
= 2(1-x)- x
= 2 - 2x – x
= 2 – 3x
30.

A man made a profit of 5% when he sold an article for N60,000.00. How much would he have sell the article to make a profit of 26%

A. N68,000

B. N72,000

C. N65,000

D. N70,000

Detailed Solution

5% profit = 100 + 5 = 105%
26% profit = 100 + 26 = 126%
∴ 105% → N60,000
1% → 60000/15
126% = 1000/105 x 126/1
=N72,000