Year : 
2007
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 47 Questions

# Question Ans
11.

If y = x cos x, find dy/dx

A. sin x - x cos x

B. sin x + x cos x

C. cos x + x sin x

D. cos x - x sin x

Detailed Solution

y = x cos x
dy/dx = 1. cos x + x (-sin x)
= cos x - x sin x
12.

Find the value of x for which the function f(x) = 2x3 - x2 - 4x + 4 has a maximum value

A. 2/3

B. 1

C. - 2/3

D. - 1

Detailed Solution

f(x) = 2x3 - x2 - 4x – 4
f’(x) = 6x2 - 2x – 4
As f’(x) = 0
Implies 6x2 - 2x – 4 = 0
3x – x – 2 = 0 (By dividing by 2)
(3x – 2)(x + 1) = 0
3x – 2 = 0 implies x = -2/3
Or x + 1 = 0 implies x = -1
f’(x) = 6x2 - 2x – 4
f’’(x) = 12x – 2
At max point f’’(x) < 0
∴f’’(x) = 12x – 2 at x = -1
= 12(-1) – 2
= -12 – 2 = -14
∴Max at x = 1
13.

Determine the value of \(\int_0 ^{\frac{\pi}{2}
}(-2cos x)dx\)

A. -2

B. -1/2

C. -3

D. -3/2

Detailed Solution

\(\int_0 ^{\frac{\pi}{2}}(-2cos x)dx = [-2sin x + c]_0 ^{\frac{\pi}{2}}\\
=(-2sin\frac{\pi}{2}+c+2sin0-c)\\
=-2sin90+c+2sin0-c\\
=-2(1)+2(0)\\
=-2\)
14.

A binary operation ⊕ on real numbers is defined by x⊕y = xy + x + y for any two real numbers x and y. The value of (-3/4)⊕6 is

A. 3/4

B. -9/2

C. 45/4

D. -3/4

Detailed Solution

x⊕y = xy + x + y
= -3/4 (6) + (-3/4) + 6
= -9/2 - 3/4 + 6
= (-18-3+3+24) / 4
= 3/4
15.

The graph above is represented by

A. y = x3 - 3x - 2

B. y = x3 + 2x2 - x - 2

C. y = x3 - 4x2 + 5x - 2

D. y = x3 - 4x + 2

Detailed Solution

x = -2, x = -1 and x = 1
then the factors; x+2, x+1 and x-1
Product of the factors; (x+2)(x+1)(x-1)
= y = (x + 2)(x2 - x + x - 1)
= y = (x+2)(x2-1)
x3 - x + 2x2 - 2 = y
x3 + 2x2 - x - 2 = y
16.

Make L the subjects of the formula if \(\sqrt{\frac{42w}{5l}}\)

A. \(\sqrt{\frac{42w}{5d}}\)

B. \(\frac{42W}{5d^2}\)

C. \(\frac{42}{5dW}\)

D. \(\frac{1}{d}\sqrt{\frac{42w}{5}}\)

Detailed Solution

\(\sqrt{\frac{42w}{5l}}\)
square both side of the equation
\(d^2 = \left(\sqrt{\frac{42W}{5l}}\right)^2\\
d^2 = \frac{42W}{5l}\\
5ld^2=42W\\
l = \frac{42W}{5d^2}\)
17.

The solution of the quadratic inequality (x3 + x - 12) ≥ 0 is

A. x ≥ -3 or x ≤ 4

B. x ≥ 3 or x ≥ -4

C. x ≤ 3 or x v -4

D. x ≥ 3 or x ≤ -4

Detailed Solution

(x3 + x - 12) ≥ 0
(x + 4)(x - 3) ≥ 0
Either x + 4 ≥ 0 implies x ≥ -4
Or x - 3 ≥ 0 implies x ≥ 3
∴ x ≥ 3 or x ≥ -4
18.

Factorize 2t2 + t - 15

A. (2t - 3)(t + 5)

B. (t + 3)(2t - 5)

C. (t + 3)(t - 5)

D. (2t + 3)(t - 5)

Detailed Solution

2t2 + t - 15 = (2t-5)(t+3)
19.

Solve the inequalities -3(x - 2) < -2(x + 3)

A. x > 12

B. x < 12

C. x > -12

D. x < - 12

Detailed Solution

-3(x-3) < -2(x+3) = -3x + 6 < -2x - 6
-3x + 2x < -6 - 6
-x < - 12
x > -12/-1
x > 12
20.

W ∝ L2 and W = 6 when L = 4. If L = √17 find W

A. 67/8

B. 65/8

C. 63/8

D. 61/8

Detailed Solution

W ∝ L2
W = KL2
K = W/L2
K = 6/42
K = 6/16 = 3/8
W = 3/8 L2
W = 3/8(√17)2
W = 3/8 x 17
W = 51/8 = 63/8
11.

If y = x cos x, find dy/dx

A. sin x - x cos x

B. sin x + x cos x

C. cos x + x sin x

D. cos x - x sin x

Detailed Solution

y = x cos x
dy/dx = 1. cos x + x (-sin x)
= cos x - x sin x
12.

Find the value of x for which the function f(x) = 2x3 - x2 - 4x + 4 has a maximum value

A. 2/3

B. 1

C. - 2/3

D. - 1

Detailed Solution

f(x) = 2x3 - x2 - 4x – 4
f’(x) = 6x2 - 2x – 4
As f’(x) = 0
Implies 6x2 - 2x – 4 = 0
3x – x – 2 = 0 (By dividing by 2)
(3x – 2)(x + 1) = 0
3x – 2 = 0 implies x = -2/3
Or x + 1 = 0 implies x = -1
f’(x) = 6x2 - 2x – 4
f’’(x) = 12x – 2
At max point f’’(x) < 0
∴f’’(x) = 12x – 2 at x = -1
= 12(-1) – 2
= -12 – 2 = -14
∴Max at x = 1
13.

Determine the value of \(\int_0 ^{\frac{\pi}{2}
}(-2cos x)dx\)

A. -2

B. -1/2

C. -3

D. -3/2

Detailed Solution

\(\int_0 ^{\frac{\pi}{2}}(-2cos x)dx = [-2sin x + c]_0 ^{\frac{\pi}{2}}\\
=(-2sin\frac{\pi}{2}+c+2sin0-c)\\
=-2sin90+c+2sin0-c\\
=-2(1)+2(0)\\
=-2\)
14.

A binary operation ⊕ on real numbers is defined by x⊕y = xy + x + y for any two real numbers x and y. The value of (-3/4)⊕6 is

A. 3/4

B. -9/2

C. 45/4

D. -3/4

Detailed Solution

x⊕y = xy + x + y
= -3/4 (6) + (-3/4) + 6
= -9/2 - 3/4 + 6
= (-18-3+3+24) / 4
= 3/4
15.

The graph above is represented by

A. y = x3 - 3x - 2

B. y = x3 + 2x2 - x - 2

C. y = x3 - 4x2 + 5x - 2

D. y = x3 - 4x + 2

Detailed Solution

x = -2, x = -1 and x = 1
then the factors; x+2, x+1 and x-1
Product of the factors; (x+2)(x+1)(x-1)
= y = (x + 2)(x2 - x + x - 1)
= y = (x+2)(x2-1)
x3 - x + 2x2 - 2 = y
x3 + 2x2 - x - 2 = y
16.

Make L the subjects of the formula if \(\sqrt{\frac{42w}{5l}}\)

A. \(\sqrt{\frac{42w}{5d}}\)

B. \(\frac{42W}{5d^2}\)

C. \(\frac{42}{5dW}\)

D. \(\frac{1}{d}\sqrt{\frac{42w}{5}}\)

Detailed Solution

\(\sqrt{\frac{42w}{5l}}\)
square both side of the equation
\(d^2 = \left(\sqrt{\frac{42W}{5l}}\right)^2\\
d^2 = \frac{42W}{5l}\\
5ld^2=42W\\
l = \frac{42W}{5d^2}\)
17.

The solution of the quadratic inequality (x3 + x - 12) ≥ 0 is

A. x ≥ -3 or x ≤ 4

B. x ≥ 3 or x ≥ -4

C. x ≤ 3 or x v -4

D. x ≥ 3 or x ≤ -4

Detailed Solution

(x3 + x - 12) ≥ 0
(x + 4)(x - 3) ≥ 0
Either x + 4 ≥ 0 implies x ≥ -4
Or x - 3 ≥ 0 implies x ≥ 3
∴ x ≥ 3 or x ≥ -4
18.

Factorize 2t2 + t - 15

A. (2t - 3)(t + 5)

B. (t + 3)(2t - 5)

C. (t + 3)(t - 5)

D. (2t + 3)(t - 5)

Detailed Solution

2t2 + t - 15 = (2t-5)(t+3)
19.

Solve the inequalities -3(x - 2) < -2(x + 3)

A. x > 12

B. x < 12

C. x > -12

D. x < - 12

Detailed Solution

-3(x-3) < -2(x+3) = -3x + 6 < -2x - 6
-3x + 2x < -6 - 6
-x < - 12
x > -12/-1
x > 12
20.

W ∝ L2 and W = 6 when L = 4. If L = √17 find W

A. 67/8

B. 65/8

C. 63/8

D. 61/8

Detailed Solution

W ∝ L2
W = KL2
K = W/L2
K = 6/42
K = 6/16 = 3/8
W = 3/8 L2
W = 3/8(√17)2
W = 3/8 x 17
W = 51/8 = 63/8