Year : 
2007
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

61 - 67 of 67 Questions

# Question Ans
61.

The venn diagram shows the choice of food of a number of visitors to a canteen. How many people took at least two kinds of food?

A. 10

B. 12

C. 15

D. 17

Detailed Solution

at least 2 kinds of food

two or more foods

i.e(R and p) + (p and Y) + (y and R) + R and y and

p = 6 + 2 + 4 + 5 = 17
62.

If the ratio x:y = 3:5 and y:z = 4:7, find the ratio x:y:z

A. 15 : 28 : 84

B. 12 : 20 : 35

C. 3 : 5 : 4

D. 5 : 4 : 7

Detailed Solution

x : y = 3.5, y : z = 4 : 7

x = 3 x 4 = 12

y = 5 x 4 = 20

y = 4 x 5 = 20

z = 7 x 5 = 35

then x : y : z = 12 : 20 : 35
63.

In the diagram, O is the centre of the circle and < PQR = 106o, find the value of y

A. 16

B. 37

C. 74

D. 127

Detailed Solution

2y + Reflex angle = 360

Reflex angle = 360 - 2y

360 - 2y = 2(106)(angles at a centre = 2ce < of circum.)

360 - 212 = 2y

148 = 2y

y \(\frac{148}{2}\)

y = 74o
64.

In the diagram, |XR| = 4cm

|RZ| = 12cm, |SR| = n, |XZ| = m and SR||YZ. Find m in terms of n

A. m = 2n

B. m = 3n

C. m = 4n

D. m = 5n

Detailed Solution

\(\frac{n}{4} = \frac{m}{4 + 12}\)

\(\frac{n}{4} = \frac{m}{16}\)

4m = 16n

\(\frac{4m}{4} = \frac{16n}{4}\)

m = 4n
65.

In the diagram, O is the centre of the circle and PQ is a diameter. Triangle RSO is an equilateral triangle of side 4cm. Find the area of the shaded region

A. 43.36cm2

B. 32.072

C. 18.212

D. 6.932

Detailed Solution

Area of shaded portion = Area of semicircle

Area of \(\bigtriangleup\) RSO

Area of semicircle = \(\frac {\pi r^2}{2} = \frac{22\times 4 \times 4}{7 \times 3}\)

= 25.14cm2; Area of \(\bigtriangleup\)RSO

=\(\sqrt{s(s - 1)(s - b)(s - c)}\); where

s = \(\frac{a + b + c}{2}\)

s = \(\frac{4 + 4 + 4}{2}\)

= 6cm

= \(\sqrt{6(6 - 4)(6 - 4) (6 - 4)}\)

= \(\sqrt{6(2) (2) (2)}\)

= \(\sqrt{18}\) = 6.93cm2

Area of shaded region

= 25.14 - 6.93
&
66.

Find the product of 0.0409 and 0.0021 leaving your answer in the standard form

A. 8.6 x 10-6

B. 8.6 x 105

C. 8.6 x 10-4

D. 8.6 x 105

Detailed Solution

0.0409 x 0.0021 = 409 x 10-4 x 21 x 10-4

= 409 x 21 x 10-4-4

= 8589 x 10-8

= 8.589 x 103 x 10-8

= 8.6 x 103 - 8

= 8.6 x 10-5
67.

Convert 425 to base three numeral

A. 2013

B. 2103

C. 2113

D. 3433

C

61.

The venn diagram shows the choice of food of a number of visitors to a canteen. How many people took at least two kinds of food?

A. 10

B. 12

C. 15

D. 17

Detailed Solution

at least 2 kinds of food

two or more foods

i.e(R and p) + (p and Y) + (y and R) + R and y and

p = 6 + 2 + 4 + 5 = 17
62.

If the ratio x:y = 3:5 and y:z = 4:7, find the ratio x:y:z

A. 15 : 28 : 84

B. 12 : 20 : 35

C. 3 : 5 : 4

D. 5 : 4 : 7

Detailed Solution

x : y = 3.5, y : z = 4 : 7

x = 3 x 4 = 12

y = 5 x 4 = 20

y = 4 x 5 = 20

z = 7 x 5 = 35

then x : y : z = 12 : 20 : 35
63.

In the diagram, O is the centre of the circle and < PQR = 106o, find the value of y

A. 16

B. 37

C. 74

D. 127

Detailed Solution

2y + Reflex angle = 360

Reflex angle = 360 - 2y

360 - 2y = 2(106)(angles at a centre = 2ce < of circum.)

360 - 212 = 2y

148 = 2y

y \(\frac{148}{2}\)

y = 74o
64.

In the diagram, |XR| = 4cm

|RZ| = 12cm, |SR| = n, |XZ| = m and SR||YZ. Find m in terms of n

A. m = 2n

B. m = 3n

C. m = 4n

D. m = 5n

Detailed Solution

\(\frac{n}{4} = \frac{m}{4 + 12}\)

\(\frac{n}{4} = \frac{m}{16}\)

4m = 16n

\(\frac{4m}{4} = \frac{16n}{4}\)

m = 4n
65.

In the diagram, O is the centre of the circle and PQ is a diameter. Triangle RSO is an equilateral triangle of side 4cm. Find the area of the shaded region

A. 43.36cm2

B. 32.072

C. 18.212

D. 6.932

Detailed Solution

Area of shaded portion = Area of semicircle

Area of \(\bigtriangleup\) RSO

Area of semicircle = \(\frac {\pi r^2}{2} = \frac{22\times 4 \times 4}{7 \times 3}\)

= 25.14cm2; Area of \(\bigtriangleup\)RSO

=\(\sqrt{s(s - 1)(s - b)(s - c)}\); where

s = \(\frac{a + b + c}{2}\)

s = \(\frac{4 + 4 + 4}{2}\)

= 6cm

= \(\sqrt{6(6 - 4)(6 - 4) (6 - 4)}\)

= \(\sqrt{6(2) (2) (2)}\)

= \(\sqrt{18}\) = 6.93cm2

Area of shaded region

= 25.14 - 6.93
&
66.

Find the product of 0.0409 and 0.0021 leaving your answer in the standard form

A. 8.6 x 10-6

B. 8.6 x 105

C. 8.6 x 10-4

D. 8.6 x 105

Detailed Solution

0.0409 x 0.0021 = 409 x 10-4 x 21 x 10-4

= 409 x 21 x 10-4-4

= 8589 x 10-8

= 8.589 x 103 x 10-8

= 8.6 x 103 - 8

= 8.6 x 10-5
67.

Convert 425 to base three numeral

A. 2013

B. 2103

C. 2113

D. 3433

C