Year : 
2005
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

1 - 10 of 47 Questions

# Question Ans
1.

Find the value of m if 13m + 24m = 41m

A. 8

B. 6

C. 5

D. 2

Detailed Solution

If 13m + 24m = 41m
1 * m1 + 3 0 + 2 * m1 + 4 * m0 = 4 * m1 + 1 * m0
1 * m + 3 * 1 + 2 * m + 4 * 1 = 4 * m + 1 * 1
m + 3 + 2m + 4 = 4m + 1
3m + 7 = 4m + 1
4m -3m = 7 - 1
m = 6
2.

If 3214 is divided by 234 and leaves a remainder r, what is the value of r?

A. zero

B. 1

C. 2

D. 3

Detailed Solution

\(\frac{321_4}{23_4}\\=\frac{(3\times4^{2})+(2\times4^{1})+(1\times4^{0})}{(2\times4^{0})+(3\times4^{0})}\\=\frac{3\times16+2\times4+1\times1}{2\times4+3\times1}\\=\frac{48+8+1}{8+3}\\=\frac{57}{11}=5\hspace{1mm}remainder\hspace{1mm}2\\∴r=2_{10} \\ Now\hspace{1mm}convert\hspace{1mm}2_{10} \hspace{1mm}to\hspace{1mm}base\hspace{1mm}4\\\frac{4}{2} = 2\\\frac{4}{0}=0\hspace{1mm}or\hspace{1mm}2\\∴r=2\)
3.

Simplify 31/2 - (21/3 * 11/4) + 3/5

A. 211/60

B. 21/60

C. 111/60

D. 11/60

Detailed Solution

31/2 - (21/3 * 11/4) + 3/5
= 7/2 - (7/3 * 5/4) + 3/5
= 7/2 - 35/12 + 3/5
= L.C.M = 60
= (210 - 175 + 36)/60
= 71/60
= 111<
4.

If the interest on N150.00 for 21/2 years is N4.50, find the interest on N250.00 for 6 months at the same rate

A. N1.50

B. N7.50

C. N15.00

D. N18.00

Detailed Solution

\(I = N4.50, P = N150,T=2\frac{1}{2}\hspace{1mm}years\\I=\frac{P\times T\times R}{100}\\4.50=\frac{150 \times 2\frac{1}{2} \times R}{100}\\\frac{4.50}{1}=\frac{150 \times 5 \times R}{100\times 2}\\4.50\times 4 = 15R\\R=\frac{4.50\times5}{15}\\R = \frac{6}{5}\\Again\hspace{1mm}I\hspace{1mm}=\frac{P\times T \times R}{100}\\=\frac{250\times 1 \times 6}{100\times 2\times 5}\\=\frac{3}{2}=N1.50\)
5.

Three boys shared some oranges. The first received 1/3 of the oranges and the second received 2/3 of the remaining. If the third boy received the remaining 12 oranges, how many oranges did they share

A. 60

B. 54

C. 48

D. 42

Detailed Solution

Let x = the number of oranges
The 1st received 1/3 of x = 1/3x
∴Remainder = x - 1/3x = 2x/3
The 2nd received 2/3 of 2x/3 = 2/3 * 2x/3 = 4x/3
The 3rd received 12 oranges
1/3
6.

Evaluate \(\frac{(81^{\frac{3}{4}}-27^{\frac{1}{3}})}{3 \times 2^3}\)

A. 3

B. 1

C. 1/3

D. 1/8

Detailed Solution

\(\frac{81^{\frac{3}{4}}-27^{\frac{1}{3}}}{3 \times 2^3} = \frac{(3^{3-\frac{3}{4}}-3^{3-\frac{3}{4}})}{3\times 2^3}\\=\frac{3^3 - 3}{3 \times 8}\\=\frac{27-3}{24}\\=\frac{24}{24}\\=1\)
7.

If Log102 = 0.3010 and Log103 = 0.4771, evaluate Log104.5

A. 0.9542

B. 0.6532

C. 0.4771

D. 0.3010

Detailed Solution

Log102 = 0.3010 and Log103 = 0.4771
Log104.5 = Log1041/2
= Log109/2
= Log109 - Log102
= log1032 - Log102
= 2Log103 - Log102
= 2(0.4771) - 0.3010
= 0.9542 - 0.3010
= 0.6532
8.

Simplify \(\frac{(√12-√3)}{(√12+√3)}\)

A. zero

B. 1/3

C. 3/5

D. 1

Detailed Solution

\(\frac{(\sqrt{12}-\sqrt{3})}{(\sqrt{12}+\sqrt{3})}=\frac{\sqrt{4\times 3}-\sqrt{3}}{\sqrt{4\times 3}+\sqrt{3}}\\=\frac{2\sqrt{3}-\sqrt{3}}{2\sqrt{3}+\sqrt{3}}\\=\frac{\sqrt{3}}{3\sqrt{3}}\\=\frac{1}{3}\)
9.

The venn diagram above shows a class of 40 students with the games they play. How many of the students play two games only?

A. 19

B. 16

C. 15

D. 4

Detailed Solution

Two games played only = 5 + 7 + 3
= 15
10.

If m = 3, p = -3, q = 7 and r = 5/2, evaluate m(p+q+r)

A. 19.50

B. 19.15

C. 18.95

D. 18.05

Detailed Solution

m = 3, p = -3, q = 7 and r = 5/2
m(p+q+r) = 3(-3 + 7 + 5/2)
= 3(4 + 5/2)
= 3(4 + 21/2)
= 3 * 61/2
= 3 * 13/2
= 39/2
= 19.50
1.

Find the value of m if 13m + 24m = 41m

A. 8

B. 6

C. 5

D. 2

Detailed Solution

If 13m + 24m = 41m
1 * m1 + 3 0 + 2 * m1 + 4 * m0 = 4 * m1 + 1 * m0
1 * m + 3 * 1 + 2 * m + 4 * 1 = 4 * m + 1 * 1
m + 3 + 2m + 4 = 4m + 1
3m + 7 = 4m + 1
4m -3m = 7 - 1
m = 6
2.

If 3214 is divided by 234 and leaves a remainder r, what is the value of r?

A. zero

B. 1

C. 2

D. 3

Detailed Solution

\(\frac{321_4}{23_4}\\=\frac{(3\times4^{2})+(2\times4^{1})+(1\times4^{0})}{(2\times4^{0})+(3\times4^{0})}\\=\frac{3\times16+2\times4+1\times1}{2\times4+3\times1}\\=\frac{48+8+1}{8+3}\\=\frac{57}{11}=5\hspace{1mm}remainder\hspace{1mm}2\\∴r=2_{10} \\ Now\hspace{1mm}convert\hspace{1mm}2_{10} \hspace{1mm}to\hspace{1mm}base\hspace{1mm}4\\\frac{4}{2} = 2\\\frac{4}{0}=0\hspace{1mm}or\hspace{1mm}2\\∴r=2\)
3.

Simplify 31/2 - (21/3 * 11/4) + 3/5

A. 211/60

B. 21/60

C. 111/60

D. 11/60

Detailed Solution

31/2 - (21/3 * 11/4) + 3/5
= 7/2 - (7/3 * 5/4) + 3/5
= 7/2 - 35/12 + 3/5
= L.C.M = 60
= (210 - 175 + 36)/60
= 71/60
= 111<
4.

If the interest on N150.00 for 21/2 years is N4.50, find the interest on N250.00 for 6 months at the same rate

A. N1.50

B. N7.50

C. N15.00

D. N18.00

Detailed Solution

\(I = N4.50, P = N150,T=2\frac{1}{2}\hspace{1mm}years\\I=\frac{P\times T\times R}{100}\\4.50=\frac{150 \times 2\frac{1}{2} \times R}{100}\\\frac{4.50}{1}=\frac{150 \times 5 \times R}{100\times 2}\\4.50\times 4 = 15R\\R=\frac{4.50\times5}{15}\\R = \frac{6}{5}\\Again\hspace{1mm}I\hspace{1mm}=\frac{P\times T \times R}{100}\\=\frac{250\times 1 \times 6}{100\times 2\times 5}\\=\frac{3}{2}=N1.50\)
5.

Three boys shared some oranges. The first received 1/3 of the oranges and the second received 2/3 of the remaining. If the third boy received the remaining 12 oranges, how many oranges did they share

A. 60

B. 54

C. 48

D. 42

Detailed Solution

Let x = the number of oranges
The 1st received 1/3 of x = 1/3x
∴Remainder = x - 1/3x = 2x/3
The 2nd received 2/3 of 2x/3 = 2/3 * 2x/3 = 4x/3
The 3rd received 12 oranges
1/3
6.

Evaluate \(\frac{(81^{\frac{3}{4}}-27^{\frac{1}{3}})}{3 \times 2^3}\)

A. 3

B. 1

C. 1/3

D. 1/8

Detailed Solution

\(\frac{81^{\frac{3}{4}}-27^{\frac{1}{3}}}{3 \times 2^3} = \frac{(3^{3-\frac{3}{4}}-3^{3-\frac{3}{4}})}{3\times 2^3}\\=\frac{3^3 - 3}{3 \times 8}\\=\frac{27-3}{24}\\=\frac{24}{24}\\=1\)
7.

If Log102 = 0.3010 and Log103 = 0.4771, evaluate Log104.5

A. 0.9542

B. 0.6532

C. 0.4771

D. 0.3010

Detailed Solution

Log102 = 0.3010 and Log103 = 0.4771
Log104.5 = Log1041/2
= Log109/2
= Log109 - Log102
= log1032 - Log102
= 2Log103 - Log102
= 2(0.4771) - 0.3010
= 0.9542 - 0.3010
= 0.6532
8.

Simplify \(\frac{(√12-√3)}{(√12+√3)}\)

A. zero

B. 1/3

C. 3/5

D. 1

Detailed Solution

\(\frac{(\sqrt{12}-\sqrt{3})}{(\sqrt{12}+\sqrt{3})}=\frac{\sqrt{4\times 3}-\sqrt{3}}{\sqrt{4\times 3}+\sqrt{3}}\\=\frac{2\sqrt{3}-\sqrt{3}}{2\sqrt{3}+\sqrt{3}}\\=\frac{\sqrt{3}}{3\sqrt{3}}\\=\frac{1}{3}\)
9.

The venn diagram above shows a class of 40 students with the games they play. How many of the students play two games only?

A. 19

B. 16

C. 15

D. 4

Detailed Solution

Two games played only = 5 + 7 + 3
= 15
10.

If m = 3, p = -3, q = 7 and r = 5/2, evaluate m(p+q+r)

A. 19.50

B. 19.15

C. 18.95

D. 18.05

Detailed Solution

m = 3, p = -3, q = 7 and r = 5/2
m(p+q+r) = 3(-3 + 7 + 5/2)
= 3(4 + 5/2)
= 3(4 + 21/2)
= 3 * 61/2
= 3 * 13/2
= 39/2
= 19.50