Year : 
2019
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

21 - 30 of 50 Questions

# Question Ans
21.

The total surface area of a solid cylinder 165cm\(^2\). Of the base diameter is 7cm, calculate its height. [Take \(\pi = \frac{22}{7}\)]

A. 7.5 cm

B. 4.5 cm

C. 4.0 cm

D. 2.0 cm

Detailed Solution

165 = 2 x \(\frac{22}{7}\) x \(\frac{7}{2}\) x h + 2 x \(\frac{22}{7}\) x \(\frac{7}{2}\) x \(\frac{7}{2}\)
165 = 22h + 77
\(\frac{22h}{22} = \frac{88}{22}\)
height = 4cm
22.

If 2\(^{a}\) = \(\sqrt{64}\) and \(\frac{b}{a}\) = 3, evaluate a\(^2 + b^{2}\)

A. 250

B. 160

C. 90

D. 48

Detailed Solution

2\(^a\) = \(\sqrt{64}\)
2\(^a\) = 8
2\(^a\) = 2\(^3\)
a = 3
b = 3\(^a\)
b = 3 x 3 = 9
a\(^2\) + b\(^2\) = 3\(^2\) + 9\(^2\)
= 9 + 81 = 90

23.

In XYZ, |YZ| = 32cm, < YXZ 53\(^o\) and XZY = 90\(^o\). Find, correct to the nearest centimetre, |XZ|

A. 31 cm

B. 25 cm

C. 20 cm

D. 13 cm

Detailed Solution

Tan 52\(^o\) = \(\frac{32}{\text{|XZ|}}\)
|XZ| = \(\frac{32}{Tan 52^o}\)
= 25cm
24.

If log\(_x\) 2 = 0.3, evaluate log\(_x\) 8.

A. 2.4

B. 1.2

C. 0.9

D. 0.6

Detailed Solution

log\(_x\)2 = 0.3
log\(_x\)8 = log\(_x\)2\(^3\) = 3 log\(_x\)2
= 3 x 0.3
= 0.9
25.

An arc subtends an angle of 72\(^o\) at the centre of a circle. Find the length of the arc if the radius of the circle is 3.5 cm. [Take \(\pi = \frac{22}{7}\)]

A. 6.6 cm

B. 8.8 cm

C. 4.4 cm

D. 2.2 cm

Detailed Solution

Length = \(\frac{\theta}{360}\) x 2\(\pi\)r
= \(\frac{72}{360} \times 2 \frac{22}{7} \times \frac{0.5}{3.5}\)
= 4.4
26.

Make b the subject of the relation lb = \(\frac{1}{2}\) (a + b)h

A. \(\frac{ah}{2l - h}\)

B. \(\frac{2l - h}{al}\)

C. \(\frac{al}{2l - h}\)

D. \(\frac{al}{2 - h}\)

Detailed Solution

lb = \(\frac{1}{2} (a + b)h
2lb = ah + bh
2lb - bh = ah
\(\frac{b(2l - h)}{2l - h} = \frac{ah}{2l - h}\)
b = \(\frac{ah}{2l - h}\)

27.

Eric sold his house through an agent who charged 8% commission on the selling price. If Eric received $117,760.00 after the sale, what was the selling price of the house?

A. $130,000.00

B. $128,000.00

C. $125,000.00

D. $120,000.00

Detailed Solution

\(\frac{8}{100} \times x + 117,760 = x\)
x - \(\frac{8x}{100} = 117,760
\(\frac{92x}{100} = 117,760\)
x = \(\frac{117,760 \times 100}{92}\)
Selling price = N128,000
28.

Find the angle at which an arc of length 22 cm subtends at the centre of a circle of radius 15cm. [Take \(\pi = \frac{22}{7}\)]

A. 70\(^o\)

B. 84\(^o\)

C. 96\(^o\)

D. 156\(^o\)

Detailed Solution

L = \(\frac{\theta}{360} \times 2 \pi r\)
22 = \(\frac{theta}{360} \times 2 \times \frac{22}{7} \times 15\)
\(\theta = \frac{22 \times 360 \times 7}{2 \times 22 \times 15}\)
\(\theta\) = 84\(^o\)
29.

A rectangular board has a length of 15cm and width x cm. If its sides are doubled, find its new area.

A. 60x cm\(^2\)

B. 45x cm\(^2\)

C. 30x cm\(^2\)

D. 15x cm\(^2\)

Detailed Solution

New are = (2 x 15) x (2 x \(x\))
= 60cm\(^2\)
30.

In the diagram, POS and ROT re straight lines. OPOR is a parallelogram, |OS| = |OT| and |QR| = |QP|. Find angle O.

A. 100\(^o\)

B. 120\(^o\)

C. 140\(^o\)

D. 160\(^o\)

Detailed Solution

S\(O\)T = 180\(^o\) - (50 + 50)
= 80\(^o\)
P\(Q\)R = 80\(^o\)
= \(\frac{360^o - 160^o}{2}\) = 100\(^o\)
21.

The total surface area of a solid cylinder 165cm\(^2\). Of the base diameter is 7cm, calculate its height. [Take \(\pi = \frac{22}{7}\)]

A. 7.5 cm

B. 4.5 cm

C. 4.0 cm

D. 2.0 cm

Detailed Solution

165 = 2 x \(\frac{22}{7}\) x \(\frac{7}{2}\) x h + 2 x \(\frac{22}{7}\) x \(\frac{7}{2}\) x \(\frac{7}{2}\)
165 = 22h + 77
\(\frac{22h}{22} = \frac{88}{22}\)
height = 4cm
22.

If 2\(^{a}\) = \(\sqrt{64}\) and \(\frac{b}{a}\) = 3, evaluate a\(^2 + b^{2}\)

A. 250

B. 160

C. 90

D. 48

Detailed Solution

2\(^a\) = \(\sqrt{64}\)
2\(^a\) = 8
2\(^a\) = 2\(^3\)
a = 3
b = 3\(^a\)
b = 3 x 3 = 9
a\(^2\) + b\(^2\) = 3\(^2\) + 9\(^2\)
= 9 + 81 = 90

23.

In XYZ, |YZ| = 32cm, < YXZ 53\(^o\) and XZY = 90\(^o\). Find, correct to the nearest centimetre, |XZ|

A. 31 cm

B. 25 cm

C. 20 cm

D. 13 cm

Detailed Solution

Tan 52\(^o\) = \(\frac{32}{\text{|XZ|}}\)
|XZ| = \(\frac{32}{Tan 52^o}\)
= 25cm
24.

If log\(_x\) 2 = 0.3, evaluate log\(_x\) 8.

A. 2.4

B. 1.2

C. 0.9

D. 0.6

Detailed Solution

log\(_x\)2 = 0.3
log\(_x\)8 = log\(_x\)2\(^3\) = 3 log\(_x\)2
= 3 x 0.3
= 0.9
25.

An arc subtends an angle of 72\(^o\) at the centre of a circle. Find the length of the arc if the radius of the circle is 3.5 cm. [Take \(\pi = \frac{22}{7}\)]

A. 6.6 cm

B. 8.8 cm

C. 4.4 cm

D. 2.2 cm

Detailed Solution

Length = \(\frac{\theta}{360}\) x 2\(\pi\)r
= \(\frac{72}{360} \times 2 \frac{22}{7} \times \frac{0.5}{3.5}\)
= 4.4
26.

Make b the subject of the relation lb = \(\frac{1}{2}\) (a + b)h

A. \(\frac{ah}{2l - h}\)

B. \(\frac{2l - h}{al}\)

C. \(\frac{al}{2l - h}\)

D. \(\frac{al}{2 - h}\)

Detailed Solution

lb = \(\frac{1}{2} (a + b)h
2lb = ah + bh
2lb - bh = ah
\(\frac{b(2l - h)}{2l - h} = \frac{ah}{2l - h}\)
b = \(\frac{ah}{2l - h}\)

27.

Eric sold his house through an agent who charged 8% commission on the selling price. If Eric received $117,760.00 after the sale, what was the selling price of the house?

A. $130,000.00

B. $128,000.00

C. $125,000.00

D. $120,000.00

Detailed Solution

\(\frac{8}{100} \times x + 117,760 = x\)
x - \(\frac{8x}{100} = 117,760
\(\frac{92x}{100} = 117,760\)
x = \(\frac{117,760 \times 100}{92}\)
Selling price = N128,000
28.

Find the angle at which an arc of length 22 cm subtends at the centre of a circle of radius 15cm. [Take \(\pi = \frac{22}{7}\)]

A. 70\(^o\)

B. 84\(^o\)

C. 96\(^o\)

D. 156\(^o\)

Detailed Solution

L = \(\frac{\theta}{360} \times 2 \pi r\)
22 = \(\frac{theta}{360} \times 2 \times \frac{22}{7} \times 15\)
\(\theta = \frac{22 \times 360 \times 7}{2 \times 22 \times 15}\)
\(\theta\) = 84\(^o\)
29.

A rectangular board has a length of 15cm and width x cm. If its sides are doubled, find its new area.

A. 60x cm\(^2\)

B. 45x cm\(^2\)

C. 30x cm\(^2\)

D. 15x cm\(^2\)

Detailed Solution

New are = (2 x 15) x (2 x \(x\))
= 60cm\(^2\)
30.

In the diagram, POS and ROT re straight lines. OPOR is a parallelogram, |OS| = |OT| and |QR| = |QP|. Find angle O.

A. 100\(^o\)

B. 120\(^o\)

C. 140\(^o\)

D. 160\(^o\)

Detailed Solution

S\(O\)T = 180\(^o\) - (50 + 50)
= 80\(^o\)
P\(Q\)R = 80\(^o\)
= \(\frac{360^o - 160^o}{2}\) = 100\(^o\)