Year : 
1992
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

1 - 10 of 49 Questions

# Question Ans
1.

Find n if 34n = 100112

A. 5

B. 6

C. 7

D. 8

Detailed Solution

To find n if 34n = 100112, convert both sides to base 10

= 3n + 4 = (1 x 24) + (0 x23) + (0 x 22) + (1 x 21) + 1 x 2o

= 3n + 4 = 16 + 0 + 0 + 2 + 1

3n + 4 = 19

3n = 15

n = 5
2.

The radius of a circle is given as 5cm subject to an error of 0.1cm. What is the percentage error in the area of the circle?

A. \(\frac{1}{25}\)

B. \(\frac{1}{4}\)

C. 4

D. 25

Detailed Solution

% error in Area = \(\frac{\pi(5.1)^2 - \pi(5)^2 \times 100%}{\pi(5)^2}\)

= \(\frac{\pi 26.01 - 25 \times 100%}{\pi(25)}\)

= \(\frac{1.01}{25}\) x 100%

= 4.04%
3.

Evaluate \(\log_{b} a^{n}\) if \(b = a^{\frac{1}{n}}\).

A. n2

B. n

C. \(\frac{1}{n}\)

D. \(\frac{1}{n^2}\)

Detailed Solution

Let \(\log_{b} a^{n} = x\)
\(\therefore a^{n} = b^{x}\)
\(a^{n} = (a^{\frac{1}{n}})^{x}\)
\(a^{n} = a^{\frac{x}{n}} \implies n = \frac{x}{n}\)
\(x = n^{2}\)
4.

What is the value of x satisfying the equation \(\frac{4^{2x}}{4^{3x}}\) = 2?

A. -2

B. -\(\frac{1}{2}\)

C. \(\frac{1}{2}\)

D. 2

Detailed Solution

\(\frac{4^{2x}}{4^{3x}}\) = 2

42x - 3x = 2

4-x = 2

(22)-x

= 21

Equating coefficients: -2x = 1

x = -\(\frac{1}{2}\)
5.

Simplify \(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\)

A. 4.0 x 10-3

B. 5.0 x 10-2

C. 2.0 x 10-1

D. 5.0 x 10-3

Detailed Solution

\(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\) = \(\frac{1.25 \times 2}{6.25}\) x 104 - 1 - 5

\(\frac{2.50}{6.25}\) x 10-2 = \(\frac{250}{625}\) x 10-2

0.4 x 10-2 = 4.0 x 10-3
6.

Simplify 5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\)

A. 17\(\sqrt{4}\)

B. 4\(\sqrt{17}\)

C. 17\(\sqrt{2}\)

D. 12\(\sqrt{4}\)

Detailed Solution

5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\) = 5(3\(\sqrt{2}\)) - 3(6\(\sqrt{2}\)) + 4(5\(\sqrt{2}\))

15\(\sqrt{2}\) - 18\(\sqrt{2}\) + 20\(\sqrt{2}\) = 35\(\sqrt{2}\) - 18\(\sqrt{2}\)

= 17\(\sqrt{2}\)
7.

If x = 3 - \(\sqrt{3}\), find x2 + \(\frac{36}{x^2}\)

A. 9

B. 18

C. 24

D. 27

Detailed Solution

x = 3 - \(\sqrt{3}\)

x2 = (3 - \(\sqrt{3}\))2

= 9 + 3 - 6\(\sqrt{34}\)

= 12 - 6\(\sqrt{3}\)

= 6(2 - \(\sqrt{3}\))

∴ x2 + \(\frac{36}{x^2}\) = 6(2 - \(\sqrt{3}\)) + \(\frac{36}{6(2 - \sqrt{3})}\)

6(2 - \(\sqrt{3}\)) + \(\frac{6}{2 - \sqrt{3}}\) = 6(- \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}\)

= 6(2 - \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{4 - 3}\)

6(2 - \(\sqrt{3}\)) + 6(2 + \(\sqrt{3}\)) = 12 + 12

= 24
8.

If x = (all prime factors of 44) and y = (all prime factors of 60), the elements of X ∪ Y and X ∩ Y respectively are

A. (2, 4, 3, 5, 11) and (4)

B. (4, 3, 5, 11) and (3, 4)

C. (2, 5, 11) and (2)

D. (2, 3, 5, 11) and (2)

Detailed Solution

x = (all prime factors of 44) and y = (all prime factors of 60)

∴ x = (2, 11), y = (2, 3, 5)

X ∪ Y = (2, 3, 5, 11),

X ∩ Y = (2)
9.

If U = (1, 2, 3, 6, 7, 8, 9, 10) is the universal set. E = (10, 4, 6, 8, 10) and F = {x: 1x\(^{2}\) = 2\(^{6}, x is odd}. Find (E ∩ F)', where ' means the complement of a set.

A. (0)

B. U

C. (8)

D. \(\phi\)

Detailed Solution

U = (1, 2, 3, 6, 7, 8, 9, 10)

E = (10, 4, 6, 8, 10)

F = (x : x\(^2\) = 2\(^6\), x is odd)

∴ F = \(\phi\) Since x\(^2\) = 2\(^6\) = 64

x = \(\pm 8\) which is even

∴ E ∩ F = \(\phi\) Since there are no common elements
10.

Factorize \(9p^2 - q^2 + 6qr - 9r^2\)

A. (3p - 3q + r)(3p - q - 3r)

B. (6p - 3q - 3r)(3p - q - 4r)

C. (3p - q + 3r)(3p + q - 3r)

D. (3q - p + 3r)(3q - p + 3r)

Detailed Solution

\(9p^{2} - q^{2} + 6qr - 9r^{2}\)
= \(9p^{2} - (q^{2} - 6qr + 9r^{2})\)
= \(9p^{2} - (q^{2} - 3qr - 3qr + 9r^{2})\)
= \(9p^{2} - (q(q - 3r) - 3r(q - 3r))\)
= \(9p^{2} - (q - 3r)^{2}\)
= \((3p + (q - 3r))(3p - (q - 3r))\)
= \((3p + q - 3r)(3p - q + 3r)\)
1.

Find n if 34n = 100112

A. 5

B. 6

C. 7

D. 8

Detailed Solution

To find n if 34n = 100112, convert both sides to base 10

= 3n + 4 = (1 x 24) + (0 x23) + (0 x 22) + (1 x 21) + 1 x 2o

= 3n + 4 = 16 + 0 + 0 + 2 + 1

3n + 4 = 19

3n = 15

n = 5
2.

The radius of a circle is given as 5cm subject to an error of 0.1cm. What is the percentage error in the area of the circle?

A. \(\frac{1}{25}\)

B. \(\frac{1}{4}\)

C. 4

D. 25

Detailed Solution

% error in Area = \(\frac{\pi(5.1)^2 - \pi(5)^2 \times 100%}{\pi(5)^2}\)

= \(\frac{\pi 26.01 - 25 \times 100%}{\pi(25)}\)

= \(\frac{1.01}{25}\) x 100%

= 4.04%
3.

Evaluate \(\log_{b} a^{n}\) if \(b = a^{\frac{1}{n}}\).

A. n2

B. n

C. \(\frac{1}{n}\)

D. \(\frac{1}{n^2}\)

Detailed Solution

Let \(\log_{b} a^{n} = x\)
\(\therefore a^{n} = b^{x}\)
\(a^{n} = (a^{\frac{1}{n}})^{x}\)
\(a^{n} = a^{\frac{x}{n}} \implies n = \frac{x}{n}\)
\(x = n^{2}\)
4.

What is the value of x satisfying the equation \(\frac{4^{2x}}{4^{3x}}\) = 2?

A. -2

B. -\(\frac{1}{2}\)

C. \(\frac{1}{2}\)

D. 2

Detailed Solution

\(\frac{4^{2x}}{4^{3x}}\) = 2

42x - 3x = 2

4-x = 2

(22)-x

= 21

Equating coefficients: -2x = 1

x = -\(\frac{1}{2}\)
5.

Simplify \(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\)

A. 4.0 x 10-3

B. 5.0 x 10-2

C. 2.0 x 10-1

D. 5.0 x 10-3

Detailed Solution

\(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\) = \(\frac{1.25 \times 2}{6.25}\) x 104 - 1 - 5

\(\frac{2.50}{6.25}\) x 10-2 = \(\frac{250}{625}\) x 10-2

0.4 x 10-2 = 4.0 x 10-3
6.

Simplify 5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\)

A. 17\(\sqrt{4}\)

B. 4\(\sqrt{17}\)

C. 17\(\sqrt{2}\)

D. 12\(\sqrt{4}\)

Detailed Solution

5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\) = 5(3\(\sqrt{2}\)) - 3(6\(\sqrt{2}\)) + 4(5\(\sqrt{2}\))

15\(\sqrt{2}\) - 18\(\sqrt{2}\) + 20\(\sqrt{2}\) = 35\(\sqrt{2}\) - 18\(\sqrt{2}\)

= 17\(\sqrt{2}\)
7.

If x = 3 - \(\sqrt{3}\), find x2 + \(\frac{36}{x^2}\)

A. 9

B. 18

C. 24

D. 27

Detailed Solution

x = 3 - \(\sqrt{3}\)

x2 = (3 - \(\sqrt{3}\))2

= 9 + 3 - 6\(\sqrt{34}\)

= 12 - 6\(\sqrt{3}\)

= 6(2 - \(\sqrt{3}\))

∴ x2 + \(\frac{36}{x^2}\) = 6(2 - \(\sqrt{3}\)) + \(\frac{36}{6(2 - \sqrt{3})}\)

6(2 - \(\sqrt{3}\)) + \(\frac{6}{2 - \sqrt{3}}\) = 6(- \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}\)

= 6(2 - \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{4 - 3}\)

6(2 - \(\sqrt{3}\)) + 6(2 + \(\sqrt{3}\)) = 12 + 12

= 24
8.

If x = (all prime factors of 44) and y = (all prime factors of 60), the elements of X ∪ Y and X ∩ Y respectively are

A. (2, 4, 3, 5, 11) and (4)

B. (4, 3, 5, 11) and (3, 4)

C. (2, 5, 11) and (2)

D. (2, 3, 5, 11) and (2)

Detailed Solution

x = (all prime factors of 44) and y = (all prime factors of 60)

∴ x = (2, 11), y = (2, 3, 5)

X ∪ Y = (2, 3, 5, 11),

X ∩ Y = (2)
9.

If U = (1, 2, 3, 6, 7, 8, 9, 10) is the universal set. E = (10, 4, 6, 8, 10) and F = {x: 1x\(^{2}\) = 2\(^{6}, x is odd}. Find (E ∩ F)', where ' means the complement of a set.

A. (0)

B. U

C. (8)

D. \(\phi\)

Detailed Solution

U = (1, 2, 3, 6, 7, 8, 9, 10)

E = (10, 4, 6, 8, 10)

F = (x : x\(^2\) = 2\(^6\), x is odd)

∴ F = \(\phi\) Since x\(^2\) = 2\(^6\) = 64

x = \(\pm 8\) which is even

∴ E ∩ F = \(\phi\) Since there are no common elements
10.

Factorize \(9p^2 - q^2 + 6qr - 9r^2\)

A. (3p - 3q + r)(3p - q - 3r)

B. (6p - 3q - 3r)(3p - q - 4r)

C. (3p - q + 3r)(3p + q - 3r)

D. (3q - p + 3r)(3q - p + 3r)

Detailed Solution

\(9p^{2} - q^{2} + 6qr - 9r^{2}\)
= \(9p^{2} - (q^{2} - 6qr + 9r^{2})\)
= \(9p^{2} - (q^{2} - 3qr - 3qr + 9r^{2})\)
= \(9p^{2} - (q(q - 3r) - 3r(q - 3r))\)
= \(9p^{2} - (q - 3r)^{2}\)
= \((3p + (q - 3r))(3p - (q - 3r))\)
= \((3p + q - 3r)(3p - q + 3r)\)