Year : 
1992
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 49 Questions

# Question Ans
11.

Solve the equation: \(y - 11\sqrt{y} + 24 = 0\)

A. 8, 3

B. 64, 9

C. 6, 4

D. 9, -8

Detailed Solution

\(y - 11\sqrt{y} + 24 = 0 \implies y + 24 = 11\sqrt{y}\)
Squaring both sides,
\(y^{2} + 48y + 576 = 121y\)
\(y^{2} + 48y - 121y + 576 = 0 \implies y^{2} - 73y + 576 = 0\)
\(y^{2} - 64y - 9y + 576 = 0\)
\(y(y - 64) - 9(y - 64) = 0\)
\((y - 9)(y - 64) = 0\)
\(\therefore \text{y = 64 or y = 9}\)
12.

Make t the subject of formula S = ut + \(\frac{1}{2} at^2\)

A. \(\frac{1}{a}\) (-u + \(\sqrt{U^2 - 2as}\))

B. \(\frac{1}{a}\) {u \(\pm\) (U2 - 2as)}

C. \(\frac{1}{a}\) {u \(\pm\) \(\sqrt{2as}\)}

D. \(\frac{1}{a}\) {-u + \(\sqrt{( 2as)}\)}

Detailed Solution

Given S = ut + \(\frac{1}{2} at^2\)

S = ut + \(\frac{1}{2} at^2\)

∴ 2S = 2ut + at2

= at2 + 2ut - 2s = 0

t = \(\frac{-2u \pm 4u^2 + 2as}{2a}\)

= -2u \(\pi\) \(\frac{\sqrt{u^2 4u^2 + 2as}}{2a}\)


= \(\frac{1}{a}\) (-u + \(\sqrt{U^2 - 2as}\))
13.

A man invested a sum of N280.00 partly at 5% and partly at 4%. if the total interest is N12.80 per annum, find the amount invested at 5%

A. 14.00

B. 120.00

C. 140.00

D. 160.00

Detailed Solution

Let the amounts invested at 4% and 5% respectively be x and y.
\(\therefore x + y = 280 ... (i)\)
Interest on x = \(\frac{x \times 4 \times 1}{100} = 0.04x\)
Interest on y = \(\frac{y \times 5 \times 1}{100} = 0.05y\)
\(\therefore 0.04x + 0.05y = 12.80\)
\(\implies 4x + 5y = 1280 ... (ii)\)
From (i), \(x = 280 - y\).
Put into (ii), \(4(280 - y) + 5y = 1280\)
\(1120 - 4y + 5y = 1280\)
\(1120 + y = 1280 \implies y = 1280 - 1120 = N160\)
\(\therefore\) N160 was invested at the rate of 5% per annum.
14.

If x + 1 is a factor of x3 + 3x2 + kx + 4, find the value of k

A. 6

B. -6

C. 8

D. -8

Detailed Solution

x + 1 is a factor of x3 + 3x2 + kx + 4

Let f(x) = x3 + 3x2 + kx + 4

∴ f(-1) = (-1)3 + 3(-1)2 + k(-1) + 4 = 0

-1 + 3 - k + 4 = 0

∴ k = 6
15.

Resolve \(\frac{3}{x^2 + x - 2}\) into partial fractions

A. \(\frac{1}{x - 1} - \frac{1}{x + 2}\)

B. \(\frac{1}{x + 1} + \frac{1}{x - 2}\)

C. \(\frac{1}{x + 1} - \frac{1}{x - 2}\)

D. \(\frac{1}{x - 2} + \frac{1}{x + 2}\)

Detailed Solution

\(\frac{3}{x^2 + x - 2}\) = \(\frac{3}{(x - 1)(x + 2)}\)

\(\frac{A}{x - 1}\) + \(\frac{B}{x + 2}\)

A(x + 2) + B(x - 1) = 3

when x = 1, 3A = 3 \(\to\) a = 1

when x = -2, -3B = 3 \(\to\) B = -1

= \(\frac{1}{x - 1} - \frac{1}{x + 2}\)
16.

Find all values of x satisfying the inequality -11 \(\leq\) 4 - 3x \(\leq\) 28

A. -5 \(\leq\) x v 8

B. 5 \(\leq\) x \(\leq\) 8

C. -8 \(\leq\) x \(\leq\) 5

D. -5 < x \(\leq\) 8

Detailed Solution

To solve -11 \(\leq\) 4 - 3x \(\leq\) 28

-11 \(\leq\) 4 - 3x also 4 -3x \(\leq\) 28

15 \(\leq\) -3x \(\leq\) 24 = 15 \(\geq\) 3x - 3x \(\geq\) -24

-5 \(\geq\) x, x \(\geq\) -8

i.e. x \(\leq\) 5

∴ -8 \(\leq\) x \(\leq\) 5
17.

Find the sum to infinity to the following series 3 + 2 + \(\frac{4}{3}\) + \(\frac{8}{9}\) + \(\frac{16}{17}\) + .....

A. 1270

B. 190

C. 18

D. 9

Detailed Solution

3 + 2 + \(\frac{4}{3}\) + \(\frac{8}{9}\) + \(\frac{16}{17}\) + .....

a = 3

r = \(\frac{2}{3}\)

s \(\alpha\) = \(\frac{a}{1 - r}\) = \(\frac{3}{1 - \frac{2}{3}}\)

= \(\frac{3}{\frac{1}{3}}\)

= 3 x 3

= 9
18.

What is the n-th term of the sequence 2, 6, 12, 20...?

A. 4n - 2

B. 2(3n - 1)

C. n2 + n

D. n2 + 3n + 2

Detailed Solution

Given that 2, 6, 12, 20...? the nth term = n\(^2\) + n

check: n = 1, u1 = 2

n = 2, u2 = 4 + 2 = 6

n = 3, u3 = 9 + 3 = 12

∴ n = 4, u4 = 16 + 4 = 20
19.

For an arithmetical sequence, the first term is 2 and the common difference is 3. Find the sum of the first 11 terms

A. 157

B. 187

C. 197

D. 200

Detailed Solution

a = 2, d = 3 and n = 11

To find Sn/sub> = \(\frac{n}{2}\) [2a + (n - 1) \(\delta\)]

= \(\frac{11}{2}\) [2(2) + (11 - 1) 3]

= \(\frac{11}{2}\)n [4 + 10(3)]

= \(\frac{11}{2}\)(34)

= 11 x 17

= 187
20.

If the binary operation \(\ast\) is defined by m \(\ast\) n = mn + m + n for any real number m and n, find the identity of the elements under this operation

A. e = 1

B. e = -1

C. e = -2

D. e = 0

Detailed Solution

Identity(e) : a \(\ast\) e = a
m \(\ast\) e = m...(i)
m \(\ast\) e = me + m + e
Because m \(\ast\) e = m
: m = me + m + e
m - m = e(m + 1)
e = \(\frac{0}{m + 1}\)
e = 0
11.

Solve the equation: \(y - 11\sqrt{y} + 24 = 0\)

A. 8, 3

B. 64, 9

C. 6, 4

D. 9, -8

Detailed Solution

\(y - 11\sqrt{y} + 24 = 0 \implies y + 24 = 11\sqrt{y}\)
Squaring both sides,
\(y^{2} + 48y + 576 = 121y\)
\(y^{2} + 48y - 121y + 576 = 0 \implies y^{2} - 73y + 576 = 0\)
\(y^{2} - 64y - 9y + 576 = 0\)
\(y(y - 64) - 9(y - 64) = 0\)
\((y - 9)(y - 64) = 0\)
\(\therefore \text{y = 64 or y = 9}\)
12.

Make t the subject of formula S = ut + \(\frac{1}{2} at^2\)

A. \(\frac{1}{a}\) (-u + \(\sqrt{U^2 - 2as}\))

B. \(\frac{1}{a}\) {u \(\pm\) (U2 - 2as)}

C. \(\frac{1}{a}\) {u \(\pm\) \(\sqrt{2as}\)}

D. \(\frac{1}{a}\) {-u + \(\sqrt{( 2as)}\)}

Detailed Solution

Given S = ut + \(\frac{1}{2} at^2\)

S = ut + \(\frac{1}{2} at^2\)

∴ 2S = 2ut + at2

= at2 + 2ut - 2s = 0

t = \(\frac{-2u \pm 4u^2 + 2as}{2a}\)

= -2u \(\pi\) \(\frac{\sqrt{u^2 4u^2 + 2as}}{2a}\)


= \(\frac{1}{a}\) (-u + \(\sqrt{U^2 - 2as}\))
13.

A man invested a sum of N280.00 partly at 5% and partly at 4%. if the total interest is N12.80 per annum, find the amount invested at 5%

A. 14.00

B. 120.00

C. 140.00

D. 160.00

Detailed Solution

Let the amounts invested at 4% and 5% respectively be x and y.
\(\therefore x + y = 280 ... (i)\)
Interest on x = \(\frac{x \times 4 \times 1}{100} = 0.04x\)
Interest on y = \(\frac{y \times 5 \times 1}{100} = 0.05y\)
\(\therefore 0.04x + 0.05y = 12.80\)
\(\implies 4x + 5y = 1280 ... (ii)\)
From (i), \(x = 280 - y\).
Put into (ii), \(4(280 - y) + 5y = 1280\)
\(1120 - 4y + 5y = 1280\)
\(1120 + y = 1280 \implies y = 1280 - 1120 = N160\)
\(\therefore\) N160 was invested at the rate of 5% per annum.
14.

If x + 1 is a factor of x3 + 3x2 + kx + 4, find the value of k

A. 6

B. -6

C. 8

D. -8

Detailed Solution

x + 1 is a factor of x3 + 3x2 + kx + 4

Let f(x) = x3 + 3x2 + kx + 4

∴ f(-1) = (-1)3 + 3(-1)2 + k(-1) + 4 = 0

-1 + 3 - k + 4 = 0

∴ k = 6
15.

Resolve \(\frac{3}{x^2 + x - 2}\) into partial fractions

A. \(\frac{1}{x - 1} - \frac{1}{x + 2}\)

B. \(\frac{1}{x + 1} + \frac{1}{x - 2}\)

C. \(\frac{1}{x + 1} - \frac{1}{x - 2}\)

D. \(\frac{1}{x - 2} + \frac{1}{x + 2}\)

Detailed Solution

\(\frac{3}{x^2 + x - 2}\) = \(\frac{3}{(x - 1)(x + 2)}\)

\(\frac{A}{x - 1}\) + \(\frac{B}{x + 2}\)

A(x + 2) + B(x - 1) = 3

when x = 1, 3A = 3 \(\to\) a = 1

when x = -2, -3B = 3 \(\to\) B = -1

= \(\frac{1}{x - 1} - \frac{1}{x + 2}\)
16.

Find all values of x satisfying the inequality -11 \(\leq\) 4 - 3x \(\leq\) 28

A. -5 \(\leq\) x v 8

B. 5 \(\leq\) x \(\leq\) 8

C. -8 \(\leq\) x \(\leq\) 5

D. -5 < x \(\leq\) 8

Detailed Solution

To solve -11 \(\leq\) 4 - 3x \(\leq\) 28

-11 \(\leq\) 4 - 3x also 4 -3x \(\leq\) 28

15 \(\leq\) -3x \(\leq\) 24 = 15 \(\geq\) 3x - 3x \(\geq\) -24

-5 \(\geq\) x, x \(\geq\) -8

i.e. x \(\leq\) 5

∴ -8 \(\leq\) x \(\leq\) 5
17.

Find the sum to infinity to the following series 3 + 2 + \(\frac{4}{3}\) + \(\frac{8}{9}\) + \(\frac{16}{17}\) + .....

A. 1270

B. 190

C. 18

D. 9

Detailed Solution

3 + 2 + \(\frac{4}{3}\) + \(\frac{8}{9}\) + \(\frac{16}{17}\) + .....

a = 3

r = \(\frac{2}{3}\)

s \(\alpha\) = \(\frac{a}{1 - r}\) = \(\frac{3}{1 - \frac{2}{3}}\)

= \(\frac{3}{\frac{1}{3}}\)

= 3 x 3

= 9
18.

What is the n-th term of the sequence 2, 6, 12, 20...?

A. 4n - 2

B. 2(3n - 1)

C. n2 + n

D. n2 + 3n + 2

Detailed Solution

Given that 2, 6, 12, 20...? the nth term = n\(^2\) + n

check: n = 1, u1 = 2

n = 2, u2 = 4 + 2 = 6

n = 3, u3 = 9 + 3 = 12

∴ n = 4, u4 = 16 + 4 = 20
19.

For an arithmetical sequence, the first term is 2 and the common difference is 3. Find the sum of the first 11 terms

A. 157

B. 187

C. 197

D. 200

Detailed Solution

a = 2, d = 3 and n = 11

To find Sn/sub> = \(\frac{n}{2}\) [2a + (n - 1) \(\delta\)]

= \(\frac{11}{2}\) [2(2) + (11 - 1) 3]

= \(\frac{11}{2}\)n [4 + 10(3)]

= \(\frac{11}{2}\)(34)

= 11 x 17

= 187
20.

If the binary operation \(\ast\) is defined by m \(\ast\) n = mn + m + n for any real number m and n, find the identity of the elements under this operation

A. e = 1

B. e = -1

C. e = -2

D. e = 0

Detailed Solution

Identity(e) : a \(\ast\) e = a
m \(\ast\) e = m...(i)
m \(\ast\) e = me + m + e
Because m \(\ast\) e = m
: m = me + m + e
m - m = e(m + 1)
e = \(\frac{0}{m + 1}\)
e = 0