Year : 
1992
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

31 - 40 of 49 Questions

# Question Ans
31.

Evaluate \(\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}\)

A. 7

B. 2

C. 3

D. 4

Detailed Solution

\(\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}\)
\(\frac{(x - 2)(x^{2} + 3x - 2)}{x^{2} - 4} = \frac{(x - 2)(x^{2} + 3x - 2)}{(x - 2)(x + 2)}\)
= \(\frac{(x^{2} + 3x - 2)}{x + 2}\)
\(\therefore \lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4} = \lim \limits_{x \to 2} \frac{x^{2} + 3x - 2}{x + 2}\)
= \(\frac{2^{2} + 3(2) - 2}{2 + 2}\)
= \(\frac{4 + 6 - 2}{4} = 2\)
32.

If y = x sin x, Find \(\frac{d^2 y}{d^2 x}\)

A. 2 cosx - x sinx

B. sinx + x cosx

C. sinx - x cosx

D. x sinx - 2 cosx

Detailed Solution

\(y = x \sin x\)
\(\frac{\mathrm d y}{\mathrm d x} = x \cos x + \sin x\)
\(\frac{\mathrm d^{2} y}{\mathrm d x^{2}} = x (- \sin x) + \cos x + \cos x\)
= \(2 \cos x - x \sin x\)
33.

Ice forms on a refrigerator ice-box at the rate of (4 - 06t)g per minute after t minutes. If initially there are 2g of ice in the box, find the mass of ice formed in 5 minutes

A. 19.5

B. 17.0

C. 14.5

D. 12.5

Detailed Solution

\(\frac{dm}{dt}\) = 4 - 0.6t

\(\int\)dm = \(\int\)(4 - 0.6t)dt

m = \(4t - 0.3t^2 + c\), when t = 0, m = 2g

∴ c = 2

m = \(4t - 0.3t^2 + 2\), when t = 5 minutes

m = \(4(5) - 0.3(5)^2 + 2 = 20 - 7.5 + 2\)

= 14.5
34.

Obtain a maximum value of the function f(x) x3 - 12x + 11

A. -5

B. -2

C. 2

D. 27

Detailed Solution

f(x) = x3 - 12x + 11

\(\frac{df(x)}{dx)}\) = 3x2 - 12 = 0

∴ 3x2 - 12 = 0 \(\to\) x2m = 4

x = \(\pm\)2, f(+2) = 8 - 24 + 11 = -15

= f(-2) = (-8) + 24 + 11

= 35 - 8 = 27

∴ maximum value = 27
35.

A student blows a balloon and its volume increases at a rate of \(\pi\)(20 - t2)cm3S-1 after t seconds. If the initial volume is 0 cm3, find the volume of the balloon after 2 seconds

A. 37.00\(\pi\)

B. 37.33\(\pi\)

C. 40.00\(\pi\)

D. 42.67\(\pi\)

Detailed Solution

\(\frac{dv}{dt}\) = \(\pi\)(20 - t2)cm2S-1

\(\int\)dv = \(\pi\)(20 - t2)dt

V = \(\pi\) \(\int\)(20 - t2)dt

V = \(\pi\)(20 \(\frac{t}{3}\) - t3) + c

when c = 0, V = (20t - \(\frac{t^3}{3}\))

after t = 2 seconds

V = \(\pi\)(40 - \(\frac{8}{3}\)

= \(\pi\)\(\frac{120 - 8}{3}\)

= \(\frac{112}{3}\)

= 37.33\(\pi\)
36.

Evaluate the integral \(\int^{\frac{\pi}{4}}_{\frac{\pi}{12}} 2 \cos 2x \mathrm {d} x\)

A. -\(\frac{1}{2}\)

B. -1

C. \(\frac{1}{2}\)

D. 1

Detailed Solution

\(\int_{\frac{\pi}{12}} ^{\frac{\pi}{4}} 2 \cos 2x \mathrm {d} x\)
= \([\frac{2 \sin 2x}{2}]|_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)
= \(\sin 2x |_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)
= \(\sin 2(\frac{\pi}{4}) - \sin 2(\frac{\pi}{12})\)
= \(\sin \frac{\pi}{2} - \sin \frac{\pi}{6}\)
= \(1 - \frac{1}{2} = \frac{1}{2}\)
37.

A store keeper checked his stock of five commodities and arrived at the following statics
\(\begin{array}{c|c} Comoditiy & Quantity\\ \hline F & 125\\ G & 113\\ H & 108\\ K & 216 \\ M & 68\end{array}\)
What angle will commodity H represent on a pie chart?

A. 216o

B. 108o

C. 68o

D. 62o

Detailed Solution

H will represent \(\frac{108}{630}\) x \(\frac{360^o}{1}\) ≈ 62°
38.

\(\begin{array}{c|c} x & 2 & 4 & 6 & 8\\ \hline f & 4 & y & 6 & 5 \end{array}\)
If the mean of the above frequency distribution is 5.2, find y

A. 2, 1

B. 1, 2

C. 1, 5

D. 5, 2

Detailed Solution

Mean \(\bar{x}\) = \(\frac{\sum fx}{\sum f}\)

= \(\frac{5.2}{1}\)

= \(\frac{8 + 4y + 36 + 40}{4 + y + 6 + 5}\)

= \(\frac{5.2}{1}\)

= \(\frac{84 + 4y}{15 + y}\)

= 5.2(15 + y)

= 84 + 4y

= 5.2 x 15 + 5.2y

= 84 + 4y

= 78 + 5.2y

= 84 = 4y

= 5.2y - 4y

= 84 - 78

1.2y = 6

y = \(\frac{6}{1.2}\)

= \(\frac{60}{12}\)

= 5
39.

\(\begin{array}{c|c} \text{No. of children} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \text{No. of families} & 7 & 11 & 6 & 7 & 7 & 5 & 3 \end{array}\)
Find the mode and median respectively of the distribution above

A. 2, 1

B. 1, 2

C. 1, 5

D. 5, 2

Detailed Solution

From the table, the mode = 1.
The median = 2.
40.

If the scores of 3 students in a test are 5, 6 and 7, find the standard deviation of their scores

A. \(\frac{2}{3}\)

B. \(\frac{2}{3}\sqrt{3}\)

C. \(\sqrt{\frac{2}{3}}\)

D. \(\sqrt{\frac{3}{2}}\)

Detailed Solution

(x) = \(\frac{5 + 6 + 7}{3}\)

= \(\frac{18}{3}\)

= 6

\(\begin{array}{c|c} scores(X) & \text{d = (x - x) deviation} & (deviation)^2\\\hline 5 & 5 - 6 & 1\\ 6 & 6 - 6 & 0 \\ 7 & 7 - 6 & 1\\ \hline & & 2\end{array}\)

S.D \(\sqrt{\frac{\sum d^2}{n}}\) where d = deviation = (x - x)

= \(\sqrt{\frac{2}{3}}\)
31.

Evaluate \(\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}\)

A. 7

B. 2

C. 3

D. 4

Detailed Solution

\(\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}\)
\(\frac{(x - 2)(x^{2} + 3x - 2)}{x^{2} - 4} = \frac{(x - 2)(x^{2} + 3x - 2)}{(x - 2)(x + 2)}\)
= \(\frac{(x^{2} + 3x - 2)}{x + 2}\)
\(\therefore \lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4} = \lim \limits_{x \to 2} \frac{x^{2} + 3x - 2}{x + 2}\)
= \(\frac{2^{2} + 3(2) - 2}{2 + 2}\)
= \(\frac{4 + 6 - 2}{4} = 2\)
32.

If y = x sin x, Find \(\frac{d^2 y}{d^2 x}\)

A. 2 cosx - x sinx

B. sinx + x cosx

C. sinx - x cosx

D. x sinx - 2 cosx

Detailed Solution

\(y = x \sin x\)
\(\frac{\mathrm d y}{\mathrm d x} = x \cos x + \sin x\)
\(\frac{\mathrm d^{2} y}{\mathrm d x^{2}} = x (- \sin x) + \cos x + \cos x\)
= \(2 \cos x - x \sin x\)
33.

Ice forms on a refrigerator ice-box at the rate of (4 - 06t)g per minute after t minutes. If initially there are 2g of ice in the box, find the mass of ice formed in 5 minutes

A. 19.5

B. 17.0

C. 14.5

D. 12.5

Detailed Solution

\(\frac{dm}{dt}\) = 4 - 0.6t

\(\int\)dm = \(\int\)(4 - 0.6t)dt

m = \(4t - 0.3t^2 + c\), when t = 0, m = 2g

∴ c = 2

m = \(4t - 0.3t^2 + 2\), when t = 5 minutes

m = \(4(5) - 0.3(5)^2 + 2 = 20 - 7.5 + 2\)

= 14.5
34.

Obtain a maximum value of the function f(x) x3 - 12x + 11

A. -5

B. -2

C. 2

D. 27

Detailed Solution

f(x) = x3 - 12x + 11

\(\frac{df(x)}{dx)}\) = 3x2 - 12 = 0

∴ 3x2 - 12 = 0 \(\to\) x2m = 4

x = \(\pm\)2, f(+2) = 8 - 24 + 11 = -15

= f(-2) = (-8) + 24 + 11

= 35 - 8 = 27

∴ maximum value = 27
35.

A student blows a balloon and its volume increases at a rate of \(\pi\)(20 - t2)cm3S-1 after t seconds. If the initial volume is 0 cm3, find the volume of the balloon after 2 seconds

A. 37.00\(\pi\)

B. 37.33\(\pi\)

C. 40.00\(\pi\)

D. 42.67\(\pi\)

Detailed Solution

\(\frac{dv}{dt}\) = \(\pi\)(20 - t2)cm2S-1

\(\int\)dv = \(\pi\)(20 - t2)dt

V = \(\pi\) \(\int\)(20 - t2)dt

V = \(\pi\)(20 \(\frac{t}{3}\) - t3) + c

when c = 0, V = (20t - \(\frac{t^3}{3}\))

after t = 2 seconds

V = \(\pi\)(40 - \(\frac{8}{3}\)

= \(\pi\)\(\frac{120 - 8}{3}\)

= \(\frac{112}{3}\)

= 37.33\(\pi\)
36.

Evaluate the integral \(\int^{\frac{\pi}{4}}_{\frac{\pi}{12}} 2 \cos 2x \mathrm {d} x\)

A. -\(\frac{1}{2}\)

B. -1

C. \(\frac{1}{2}\)

D. 1

Detailed Solution

\(\int_{\frac{\pi}{12}} ^{\frac{\pi}{4}} 2 \cos 2x \mathrm {d} x\)
= \([\frac{2 \sin 2x}{2}]|_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)
= \(\sin 2x |_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)
= \(\sin 2(\frac{\pi}{4}) - \sin 2(\frac{\pi}{12})\)
= \(\sin \frac{\pi}{2} - \sin \frac{\pi}{6}\)
= \(1 - \frac{1}{2} = \frac{1}{2}\)
37.

A store keeper checked his stock of five commodities and arrived at the following statics
\(\begin{array}{c|c} Comoditiy & Quantity\\ \hline F & 125\\ G & 113\\ H & 108\\ K & 216 \\ M & 68\end{array}\)
What angle will commodity H represent on a pie chart?

A. 216o

B. 108o

C. 68o

D. 62o

Detailed Solution

H will represent \(\frac{108}{630}\) x \(\frac{360^o}{1}\) ≈ 62°
38.

\(\begin{array}{c|c} x & 2 & 4 & 6 & 8\\ \hline f & 4 & y & 6 & 5 \end{array}\)
If the mean of the above frequency distribution is 5.2, find y

A. 2, 1

B. 1, 2

C. 1, 5

D. 5, 2

Detailed Solution

Mean \(\bar{x}\) = \(\frac{\sum fx}{\sum f}\)

= \(\frac{5.2}{1}\)

= \(\frac{8 + 4y + 36 + 40}{4 + y + 6 + 5}\)

= \(\frac{5.2}{1}\)

= \(\frac{84 + 4y}{15 + y}\)

= 5.2(15 + y)

= 84 + 4y

= 5.2 x 15 + 5.2y

= 84 + 4y

= 78 + 5.2y

= 84 = 4y

= 5.2y - 4y

= 84 - 78

1.2y = 6

y = \(\frac{6}{1.2}\)

= \(\frac{60}{12}\)

= 5
39.

\(\begin{array}{c|c} \text{No. of children} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \text{No. of families} & 7 & 11 & 6 & 7 & 7 & 5 & 3 \end{array}\)
Find the mode and median respectively of the distribution above

A. 2, 1

B. 1, 2

C. 1, 5

D. 5, 2

Detailed Solution

From the table, the mode = 1.
The median = 2.
40.

If the scores of 3 students in a test are 5, 6 and 7, find the standard deviation of their scores

A. \(\frac{2}{3}\)

B. \(\frac{2}{3}\sqrt{3}\)

C. \(\sqrt{\frac{2}{3}}\)

D. \(\sqrt{\frac{3}{2}}\)

Detailed Solution

(x) = \(\frac{5 + 6 + 7}{3}\)

= \(\frac{18}{3}\)

= 6

\(\begin{array}{c|c} scores(X) & \text{d = (x - x) deviation} & (deviation)^2\\\hline 5 & 5 - 6 & 1\\ 6 & 6 - 6 & 0 \\ 7 & 7 - 6 & 1\\ \hline & & 2\end{array}\)

S.D \(\sqrt{\frac{\sum d^2}{n}}\) where d = deviation = (x - x)

= \(\sqrt{\frac{2}{3}}\)