Year : 
1994
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

1 - 10 of 50 Questions

# Question Ans
1.

If the 2nd and 5th terms of a G.P are 6 and 48 respectively, find the sum of the first for term

A. -45

B. -15

C. 15

D. 33

E. 45

Detailed Solution

T\(_{2}\) = ar = 6
T\(_{5}\) = ar\(^{4}\) = 48
\(\frac{T_5}{T_2}\) = \(\frac{ar^{4}}{ar}\) = \(\frac{48}{6}\)
= r\(^{3}\) = 8
⇒ r = 2
S\(_{n}\) = \(\frac{a((r^n) - 1)}{r - 1}\)
S\(_{4}\) = \(\frac{a((r^4) - 1)}{r - 1}\)
S\(_{4}\) = \(\frac{3((2^4) - 1)}{2 - 1}\)
= 3(16 -1)
= 45
2.

If sin\( \theta \) = K find tan\(\theta\), 0° \(\leq\) \(\theta\) \(\leq\) 90°.

A. 1-K

B. \( \frac{k}{k - 1} \)

C. \( \frac{k}{\sqrt{1 - k^2}} \)

D. \( \frac{k}{1 - k} \)

E. \( \frac{k}{\sqrt{ k^2 - 1}} \)

Detailed Solution

\(\sin \theta = \frac{k}{1}\)
\(\implies 1^2 = k^2 + adj^2\)
\(adj = \sqrt{1 - k^2}\)
\(\therefore \tan \theta = \frac{k}{\sqrt{1 - k^2}}\)
3.

Simplify: \(2\frac{1}{3} \div 2\frac{2}{3} \times 1\frac{1}{7}\)

A. 0

B. 1

C. 2

D. 3

E. 4

Detailed Solution

\(2\frac{1}{3} \div 2\frac{2}{3} \times 1\frac{1}{7}\)
= \(\frac{7}{3} \div \frac{8}{3} \times \frac{8}{7}\)
= \(\frac{7}{3} \times \frac{3}{8} \times \frac{8}{7}\)
= 1
4.

Which of the following is equal to \(\frac{72}{125}\)

A. \( \frac{2^3 \times 3^2}{5^3} \)

B. \( \frac{2^4 \times 3}{5^3} \)

C. \( \frac{2^3 \times 3}{5^3} \)

D. \( \frac{2^4 \times 3}{5^5} \)

E. \( \frac{2^2 \times 3^2 \times 4^2}{5^2} \)

Detailed Solution

\(\frac{72}{125} = \frac{8 \times 9}{5 \times 5 \times 5}\)
= \(\frac{2^3 \times 3^2}{5^3}\)
5.

Express in \( \frac{8.75}{0.025} \)standard form

A. 3.5 x 10-3

B. 3.5 x 10-2

C. 3.5 x 101

D. 3.5 x 102

E. 3.5 x 103

Detailed Solution

\(\frac{8.75}{0.025}\)
= \(\frac{8750}{25}\)
= \(350\)
= \(3.5 \times 10^2\)
6.

Evaluate \( \frac{27^{\frac{1}{3}}}{16^{-\frac{1}{4}}} \)

A. 6

B. 5

C. 4

D. 3

E. 2

Detailed Solution

\(\frac{27^{\frac{1}{3}}}{16^{-\frac{1}{4}}} \)
= \(\frac{(3^3)^{\frac{1}{3}}}{(2^4)^{-\frac{1}{4}}}\)
= \(\frac{3}{2^{-1}}\)
= 6
7.

Simplify: 16\(^{\frac{5}{4}}\) x 2\(^{-3}\) x 3\(^0\)

A. 0

B. 2

C. 4

D. 10

E. 20

Detailed Solution

16\(^{\frac{5}{4}}\) x 2\(^{-3}\) x 3\(^0\)
= \((2^4)^{\frac{5}{4}} \times 2^{-3} \times 1\)
= \(2^5 \times 2^{-3} \times 1\)
= \(2^2\)
= 4.
8.

Simplify; 2log\(_{3}\) 6 + log\(_{3}\) 12 - log\(_{3}\) 16

A. 2

B. 3

C. 2 - 2log32

D. 3 - log32

E. 4 - log32

Detailed Solution

2log\(_{3}\) 6 + log\(_{3}\) 12 - log\(_{3}\) 16
= \(\log_3 6^2 + \log_3 12 - \log_3 16\)
= \(\log_{3} (\frac{36 \times 12}{16})\)
= \(\log_{3} (27)\)
= \(\log_{3} 3^3\)
= \(3 \log_{3} 3\)
= 3
9.

What is the number whose logarithm to base 10 is \(\bar{3}.4771\)?

A. 3.0

B. 0.3

C. 0.03

D. 0.003

E. 0.0003

D

10.

A house bought for N100,000 was later auctioned for N80,000. Find the loss percent.

A. 20%

B. 30%

C. 40%

D. 50%

E. 60%

Detailed Solution

Loss = N(100,000 - 80,000)
= N20,000.
Loss percentage = \(\frac{20,000}{100,000} \times 100%\)
= 20%
1.

If the 2nd and 5th terms of a G.P are 6 and 48 respectively, find the sum of the first for term

A. -45

B. -15

C. 15

D. 33

E. 45

Detailed Solution

T\(_{2}\) = ar = 6
T\(_{5}\) = ar\(^{4}\) = 48
\(\frac{T_5}{T_2}\) = \(\frac{ar^{4}}{ar}\) = \(\frac{48}{6}\)
= r\(^{3}\) = 8
⇒ r = 2
S\(_{n}\) = \(\frac{a((r^n) - 1)}{r - 1}\)
S\(_{4}\) = \(\frac{a((r^4) - 1)}{r - 1}\)
S\(_{4}\) = \(\frac{3((2^4) - 1)}{2 - 1}\)
= 3(16 -1)
= 45
2.

If sin\( \theta \) = K find tan\(\theta\), 0° \(\leq\) \(\theta\) \(\leq\) 90°.

A. 1-K

B. \( \frac{k}{k - 1} \)

C. \( \frac{k}{\sqrt{1 - k^2}} \)

D. \( \frac{k}{1 - k} \)

E. \( \frac{k}{\sqrt{ k^2 - 1}} \)

Detailed Solution

\(\sin \theta = \frac{k}{1}\)
\(\implies 1^2 = k^2 + adj^2\)
\(adj = \sqrt{1 - k^2}\)
\(\therefore \tan \theta = \frac{k}{\sqrt{1 - k^2}}\)
3.

Simplify: \(2\frac{1}{3} \div 2\frac{2}{3} \times 1\frac{1}{7}\)

A. 0

B. 1

C. 2

D. 3

E. 4

Detailed Solution

\(2\frac{1}{3} \div 2\frac{2}{3} \times 1\frac{1}{7}\)
= \(\frac{7}{3} \div \frac{8}{3} \times \frac{8}{7}\)
= \(\frac{7}{3} \times \frac{3}{8} \times \frac{8}{7}\)
= 1
4.

Which of the following is equal to \(\frac{72}{125}\)

A. \( \frac{2^3 \times 3^2}{5^3} \)

B. \( \frac{2^4 \times 3}{5^3} \)

C. \( \frac{2^3 \times 3}{5^3} \)

D. \( \frac{2^4 \times 3}{5^5} \)

E. \( \frac{2^2 \times 3^2 \times 4^2}{5^2} \)

Detailed Solution

\(\frac{72}{125} = \frac{8 \times 9}{5 \times 5 \times 5}\)
= \(\frac{2^3 \times 3^2}{5^3}\)
5.

Express in \( \frac{8.75}{0.025} \)standard form

A. 3.5 x 10-3

B. 3.5 x 10-2

C. 3.5 x 101

D. 3.5 x 102

E. 3.5 x 103

Detailed Solution

\(\frac{8.75}{0.025}\)
= \(\frac{8750}{25}\)
= \(350\)
= \(3.5 \times 10^2\)
6.

Evaluate \( \frac{27^{\frac{1}{3}}}{16^{-\frac{1}{4}}} \)

A. 6

B. 5

C. 4

D. 3

E. 2

Detailed Solution

\(\frac{27^{\frac{1}{3}}}{16^{-\frac{1}{4}}} \)
= \(\frac{(3^3)^{\frac{1}{3}}}{(2^4)^{-\frac{1}{4}}}\)
= \(\frac{3}{2^{-1}}\)
= 6
7.

Simplify: 16\(^{\frac{5}{4}}\) x 2\(^{-3}\) x 3\(^0\)

A. 0

B. 2

C. 4

D. 10

E. 20

Detailed Solution

16\(^{\frac{5}{4}}\) x 2\(^{-3}\) x 3\(^0\)
= \((2^4)^{\frac{5}{4}} \times 2^{-3} \times 1\)
= \(2^5 \times 2^{-3} \times 1\)
= \(2^2\)
= 4.
8.

Simplify; 2log\(_{3}\) 6 + log\(_{3}\) 12 - log\(_{3}\) 16

A. 2

B. 3

C. 2 - 2log32

D. 3 - log32

E. 4 - log32

Detailed Solution

2log\(_{3}\) 6 + log\(_{3}\) 12 - log\(_{3}\) 16
= \(\log_3 6^2 + \log_3 12 - \log_3 16\)
= \(\log_{3} (\frac{36 \times 12}{16})\)
= \(\log_{3} (27)\)
= \(\log_{3} 3^3\)
= \(3 \log_{3} 3\)
= 3
9.

What is the number whose logarithm to base 10 is \(\bar{3}.4771\)?

A. 3.0

B. 0.3

C. 0.03

D. 0.003

E. 0.0003

D

10.

A house bought for N100,000 was later auctioned for N80,000. Find the loss percent.

A. 20%

B. 30%

C. 40%

D. 50%

E. 60%

Detailed Solution

Loss = N(100,000 - 80,000)
= N20,000.
Loss percentage = \(\frac{20,000}{100,000} \times 100%\)
= 20%