Year : 
2005
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

11 - 20 of 47 Questions

# Question Ans
11.

Convert 101101two to a number in base ten

A. 61

B. 46

C. 45

D. 44

Detailed Solution

1011012 = 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 32 + 0 + 8 + 4 + 0 + 1 = 4510
12.

Solve the equation \(2^7 = 8^{5-x}\)

A. \(\frac{5}{8}\)

B. \(\frac{8}{3}\)

C. \(\frac{3}{2}\)

D. \(\frac{15}{4}\)

Detailed Solution

\(2^7 = 2^{3(5-x)}\Rightarrow 7 = 3^{5-x} \Rightarrow 7 15 - 3x\\
\Rightarrow -8 = -3x \Rightarrow x = \frac{8}{3}\)
13.

Expand (2x-3y)(x-5y)

A. \(2x^2 + 13xy - 15y^2\)

B. \(2x^2 - 13xy - 15y^2\)

C. \(2x^2 + 13xy + 15y^2\)

D. \(2x^2 - 13xy + 15y^2\)

Detailed Solution

\((2x-3y)(x-5y)=2x^2 - 10xy - 3xy + 15y^2\\
=2x^2 - 13xy + 15y^2\)
14.

Make f the subject of the relation \(v = u + ft\)

A. \(\frac{v-u}{t}\)

B. \(\frac{u-v}{t}\)

C. \(t(v+u\)

D. \(\frac{v}{u}-t\)

Detailed Solution

\(v=u+ft \Rightarrow v-u=ft\Rightarrow f=\frac{v-u}{t}\)
15.

The lengths of the adjacent sides of a right - angled triangle are xcm, (x-1)cm. If the length of the hypotenuse is \(\sqrt{13}cm\), find the value of x

A. 2

B. 3

C. 4

D. 5

Detailed Solution

\(x^2+(x-1)^2 = (\sqrt{13})^2 \Rightarrow x^2 + x^2 - 2x + 1 = 13\\
2x^2 - 2x - 12 = 0\) dividing through by 2
\(x^2 - x- 6 = 0; (x-3)(x-2) = 0 \Rightarrow x = 3 or -2 \)
16.

The probability that John and James pass an examination are 3/4 and 3/5 respectively, find the probability of both boys failing the examination

A. \(\frac{1}{10}\)

B. \(\frac{3}{10}\)

C. \(\frac{9}{20}\)

D. \(\frac{11}{20}\)

Detailed Solution

Prob.(John pass)\(=frac{3}{4}\) prob.(John fail) \(=1-frac{3}{4}=\frac{1}{4}\)
Prob.(James pass) \(=frac{3}{5}\) Prob.(James fail) \(=1-frac{3}{5}=\frac{2}{5}\)
Prob(both boys fail)\(=frac{1}{4}\times \frac{2}{5}=\frac{1}{10}\)
17.

In the diagram PQ and MN are straight lines. Find the value of x

A. 13o

B. 17o

C. 28o

D. 30o

Detailed Solution

The straight line MN = 180 = 2(x+30o) + 86o =>
180 = 2x + 60o + 86o => 180o = 2x + 146o => 2x = 180 - 46 = 34o => x = 34/2 = 17o
18.

In the diagram, PQRS is a parallelogram and ∠QRT = 30o. Find x

A. 95o

B. 100o

C. 120o

D. 150o

Detailed Solution

Since ∠QRS = 180o - 30o = 150o and ∠SPQ = ∠QRS (theorem opp. angles in a parallelogram are equal) ∴ x = 150o
19.

From a point R, 300m north of P, man walks eastward to a place Q which is 600m from P. Find the bearing of P from Q, correct to the nearest degreeee

A. 026o

B. 045o

C. 210o

D. 240o

Detailed Solution

\(cos\theta = \frac{adj}{hyp}=\frac{300}{600}=\frac{1}{2}\\
\theta = cos^{-1}(0.5000)=60^{\circ}\)
The bearing of P from \(Q = \theta + 180 = 60 + 180 = 240^{\circ}\)
20.

What is the diameter of a circle of area 77cm2 [Take \(\pi = \frac{22}{7}\)]

A. \(\frac{\sqrt{2}}{7}cm\)

B. \(3\frac{1}{2}cm\)

C. 7cm

D. \(7\sqrt{2}cm\)

Detailed Solution

\(A=\pi r^2 \Rightarrow 77 = \frac{22}{7} \times \frac{r^2}{1}\Rightarrow r^2 = \frac{77\times 7}{22} \Rightarrow r^2 = \frac{49}{2}\\
\Rightarrow r = \sqrt{\frac{49}{2}}=\frac{7}{\sqrt{2}}. Since D = 2r ∴ D = 2 \times \frac{7}{\sqrt{2}} = \frac{14}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = 7\sqrt{2}cm\)
11.

Convert 101101two to a number in base ten

A. 61

B. 46

C. 45

D. 44

Detailed Solution

1011012 = 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 32 + 0 + 8 + 4 + 0 + 1 = 4510
12.

Solve the equation \(2^7 = 8^{5-x}\)

A. \(\frac{5}{8}\)

B. \(\frac{8}{3}\)

C. \(\frac{3}{2}\)

D. \(\frac{15}{4}\)

Detailed Solution

\(2^7 = 2^{3(5-x)}\Rightarrow 7 = 3^{5-x} \Rightarrow 7 15 - 3x\\
\Rightarrow -8 = -3x \Rightarrow x = \frac{8}{3}\)
13.

Expand (2x-3y)(x-5y)

A. \(2x^2 + 13xy - 15y^2\)

B. \(2x^2 - 13xy - 15y^2\)

C. \(2x^2 + 13xy + 15y^2\)

D. \(2x^2 - 13xy + 15y^2\)

Detailed Solution

\((2x-3y)(x-5y)=2x^2 - 10xy - 3xy + 15y^2\\
=2x^2 - 13xy + 15y^2\)
14.

Make f the subject of the relation \(v = u + ft\)

A. \(\frac{v-u}{t}\)

B. \(\frac{u-v}{t}\)

C. \(t(v+u\)

D. \(\frac{v}{u}-t\)

Detailed Solution

\(v=u+ft \Rightarrow v-u=ft\Rightarrow f=\frac{v-u}{t}\)
15.

The lengths of the adjacent sides of a right - angled triangle are xcm, (x-1)cm. If the length of the hypotenuse is \(\sqrt{13}cm\), find the value of x

A. 2

B. 3

C. 4

D. 5

Detailed Solution

\(x^2+(x-1)^2 = (\sqrt{13})^2 \Rightarrow x^2 + x^2 - 2x + 1 = 13\\
2x^2 - 2x - 12 = 0\) dividing through by 2
\(x^2 - x- 6 = 0; (x-3)(x-2) = 0 \Rightarrow x = 3 or -2 \)
16.

The probability that John and James pass an examination are 3/4 and 3/5 respectively, find the probability of both boys failing the examination

A. \(\frac{1}{10}\)

B. \(\frac{3}{10}\)

C. \(\frac{9}{20}\)

D. \(\frac{11}{20}\)

Detailed Solution

Prob.(John pass)\(=frac{3}{4}\) prob.(John fail) \(=1-frac{3}{4}=\frac{1}{4}\)
Prob.(James pass) \(=frac{3}{5}\) Prob.(James fail) \(=1-frac{3}{5}=\frac{2}{5}\)
Prob(both boys fail)\(=frac{1}{4}\times \frac{2}{5}=\frac{1}{10}\)
17.

In the diagram PQ and MN are straight lines. Find the value of x

A. 13o

B. 17o

C. 28o

D. 30o

Detailed Solution

The straight line MN = 180 = 2(x+30o) + 86o =>
180 = 2x + 60o + 86o => 180o = 2x + 146o => 2x = 180 - 46 = 34o => x = 34/2 = 17o
18.

In the diagram, PQRS is a parallelogram and ∠QRT = 30o. Find x

A. 95o

B. 100o

C. 120o

D. 150o

Detailed Solution

Since ∠QRS = 180o - 30o = 150o and ∠SPQ = ∠QRS (theorem opp. angles in a parallelogram are equal) ∴ x = 150o
19.

From a point R, 300m north of P, man walks eastward to a place Q which is 600m from P. Find the bearing of P from Q, correct to the nearest degreeee

A. 026o

B. 045o

C. 210o

D. 240o

Detailed Solution

\(cos\theta = \frac{adj}{hyp}=\frac{300}{600}=\frac{1}{2}\\
\theta = cos^{-1}(0.5000)=60^{\circ}\)
The bearing of P from \(Q = \theta + 180 = 60 + 180 = 240^{\circ}\)
20.

What is the diameter of a circle of area 77cm2 [Take \(\pi = \frac{22}{7}\)]

A. \(\frac{\sqrt{2}}{7}cm\)

B. \(3\frac{1}{2}cm\)

C. 7cm

D. \(7\sqrt{2}cm\)

Detailed Solution

\(A=\pi r^2 \Rightarrow 77 = \frac{22}{7} \times \frac{r^2}{1}\Rightarrow r^2 = \frac{77\times 7}{22} \Rightarrow r^2 = \frac{49}{2}\\
\Rightarrow r = \sqrt{\frac{49}{2}}=\frac{7}{\sqrt{2}}. Since D = 2r ∴ D = 2 \times \frac{7}{\sqrt{2}} = \frac{14}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = 7\sqrt{2}cm\)