Year : 
2005
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

21 - 30 of 47 Questions

# Question Ans
21.

Solve the equation 2x - 3y = 22; 3x + 2y = 7

A. -5

B. -4

C. 4

D. 5

Detailed Solution

2x - 3y = 22 ---- eqn I
3x + 2y = 7 ---- eqn II
multiply eqn I by 2
4x - 6y = 44 ---- eqn III
multiply eqn II by 3
9x + 6y = 21 ---- eqn IV
Adding eqn III and IV
=> 13x = 65 => x = 5
Substituting 5 for x in eqn II
3x5 + 2y = 7 => 2y = -8
y = -4
22.

Solve the equation \(\frac{2y-1}{3} - \frac{3y-1}{4} = 1\)

A. -8

B. -13

C. 13

D. 19

Detailed Solution

\(\frac{4(2y-1)-3(3y-1)}{12}=12 \Rightarrow 12 8y - 4 - 9y + 3 = 12 \\
\Rightarrow -y-1=12\Rightarrow -y=13\Rightarrow y=-13\)
23.

If \(log_9x= 1.5\),find x

A. 36

B. 27

C. 24.5

D. 13.5

Detailed Solution

\(log_9x= 1.5\Rightarrow x = 9^{1.5} = 9^{\frac{3}{2}}=(3^2)^{\frac{3}{2}}=3^3=27\)
24.

A sequence is given by \(2\frac{1}{2}, 5, 7\frac{1}{2}, .....\) if the nth term is 25, find n

A. 9

B. 10

C. 12

D. 15

Detailed Solution

\(a = 2\frac{1}{2}, nth = a + (n-1)d \Rightarrow 25 = 2\frac{1}{2} + (n-1)2\frac{1}{2}\\
25 = \frac{5}{2}+(n-1)\frac{5}{2} \Rightarrow 22\frac{1}{2} = \frac{5n-5}{2}\Rightarrow \frac{45}{2} = \frac{5n-5}{2}\\
45 = 5n - 5 \Rightarrow 5n = 50 \Rightarrow n = 10\)
25.

Given that the root of an the equation \(2x^2 + (k+2)x+k=0\) is 2, find the value of k

A. -4

B. -2

C. -1

D. \(-\frac{1}{4}\)

Detailed Solution

Substituting for x in the equation
\(2(2)^2 + (k+2)2+k = 0 \Rightarrow 8 +2k + 4 + k =0 \Rightarrow 3k =-12; k=-4\)
26.

Find the mean of the numbers 1, 3, 4, 8, 8, 4 and 7

A. 4

B. 5

C. 6

D. 7

Detailed Solution

mean \(=\frac{1+3+4+8+8+4+7}{7}=\frac{35}{7}=5\)
27.

What is the total surface area of a closed cylinder of height 10cm and diameter 7cm? [Take \(\pi = \frac{22}{7}\)]

A. 77cm2

B. 227cm2

C. 297cm2

D. 374cm2

Detailed Solution

T.S.A of s closed cylinder = \(2\pi r(r+h)\\
=\frac{2}{1}\times \frac{22}{7} \times \frac{7}{2}\left(\frac{7}{2}+\frac{10}{1}\right)=\frac{22}{1}\left(\frac{27}{2}\right)=27\time 11=297cm^2\)
28.

An arc of a circle of radius 14cm subtends angle 300o at the center. Find the perimeter of the sector formed by the arc

A. 14.67cm

B. 42.67cm

C. 101.33cm

D. 543.33cm

Detailed Solution

The perimeter of the sector \(=2r+\frac{\theta}{360}\times 2\pi r \\
\Rightarrow 28 + \frac{300}{360} \times \frac{2}{1} \times \frac{22}{7}\times \frac{14}{1} = \frac{220}{3}+28\\
73.133+28=101.33cm\)
29.

Which of the following statements describes the locus of a point R which moves in a plane such that its equidistant from two intersecting lines?

A. the bisector of the angle formed by the lines

B. the point of intersection of the two lines

C. A cone, with two intersecting lines as slant height

D. A circle, with the point of intersection of the two lines as the center

A

30.

P = {3, 9, 11, 13} and Q = {3, 7, 9, 15} are subset of the universal set ξ = {1, 3, 7, 9, 11, 13, 15} find PI ∩ QI

A. {3, 9}

B. {5, 7, 9}

C. {1}

D. {1, 11}

Detailed Solution

PI = {1, 7, 15} ; QI = {1, 13, 11}
PI ∩ QI = {1}
21.

Solve the equation 2x - 3y = 22; 3x + 2y = 7

A. -5

B. -4

C. 4

D. 5

Detailed Solution

2x - 3y = 22 ---- eqn I
3x + 2y = 7 ---- eqn II
multiply eqn I by 2
4x - 6y = 44 ---- eqn III
multiply eqn II by 3
9x + 6y = 21 ---- eqn IV
Adding eqn III and IV
=> 13x = 65 => x = 5
Substituting 5 for x in eqn II
3x5 + 2y = 7 => 2y = -8
y = -4
22.

Solve the equation \(\frac{2y-1}{3} - \frac{3y-1}{4} = 1\)

A. -8

B. -13

C. 13

D. 19

Detailed Solution

\(\frac{4(2y-1)-3(3y-1)}{12}=12 \Rightarrow 12 8y - 4 - 9y + 3 = 12 \\
\Rightarrow -y-1=12\Rightarrow -y=13\Rightarrow y=-13\)
23.

If \(log_9x= 1.5\),find x

A. 36

B. 27

C. 24.5

D. 13.5

Detailed Solution

\(log_9x= 1.5\Rightarrow x = 9^{1.5} = 9^{\frac{3}{2}}=(3^2)^{\frac{3}{2}}=3^3=27\)
24.

A sequence is given by \(2\frac{1}{2}, 5, 7\frac{1}{2}, .....\) if the nth term is 25, find n

A. 9

B. 10

C. 12

D. 15

Detailed Solution

\(a = 2\frac{1}{2}, nth = a + (n-1)d \Rightarrow 25 = 2\frac{1}{2} + (n-1)2\frac{1}{2}\\
25 = \frac{5}{2}+(n-1)\frac{5}{2} \Rightarrow 22\frac{1}{2} = \frac{5n-5}{2}\Rightarrow \frac{45}{2} = \frac{5n-5}{2}\\
45 = 5n - 5 \Rightarrow 5n = 50 \Rightarrow n = 10\)
25.

Given that the root of an the equation \(2x^2 + (k+2)x+k=0\) is 2, find the value of k

A. -4

B. -2

C. -1

D. \(-\frac{1}{4}\)

Detailed Solution

Substituting for x in the equation
\(2(2)^2 + (k+2)2+k = 0 \Rightarrow 8 +2k + 4 + k =0 \Rightarrow 3k =-12; k=-4\)
26.

Find the mean of the numbers 1, 3, 4, 8, 8, 4 and 7

A. 4

B. 5

C. 6

D. 7

Detailed Solution

mean \(=\frac{1+3+4+8+8+4+7}{7}=\frac{35}{7}=5\)
27.

What is the total surface area of a closed cylinder of height 10cm and diameter 7cm? [Take \(\pi = \frac{22}{7}\)]

A. 77cm2

B. 227cm2

C. 297cm2

D. 374cm2

Detailed Solution

T.S.A of s closed cylinder = \(2\pi r(r+h)\\
=\frac{2}{1}\times \frac{22}{7} \times \frac{7}{2}\left(\frac{7}{2}+\frac{10}{1}\right)=\frac{22}{1}\left(\frac{27}{2}\right)=27\time 11=297cm^2\)
28.

An arc of a circle of radius 14cm subtends angle 300o at the center. Find the perimeter of the sector formed by the arc

A. 14.67cm

B. 42.67cm

C. 101.33cm

D. 543.33cm

Detailed Solution

The perimeter of the sector \(=2r+\frac{\theta}{360}\times 2\pi r \\
\Rightarrow 28 + \frac{300}{360} \times \frac{2}{1} \times \frac{22}{7}\times \frac{14}{1} = \frac{220}{3}+28\\
73.133+28=101.33cm\)
29.

Which of the following statements describes the locus of a point R which moves in a plane such that its equidistant from two intersecting lines?

A. the bisector of the angle formed by the lines

B. the point of intersection of the two lines

C. A cone, with two intersecting lines as slant height

D. A circle, with the point of intersection of the two lines as the center

A

30.

P = {3, 9, 11, 13} and Q = {3, 7, 9, 15} are subset of the universal set ξ = {1, 3, 7, 9, 11, 13, 15} find PI ∩ QI

A. {3, 9}

B. {5, 7, 9}

C. {1}

D. {1, 11}

Detailed Solution

PI = {1, 7, 15} ; QI = {1, 13, 11}
PI ∩ QI = {1}