Year : 
1985
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

31 - 40 of 47 Questions

# Question Ans
31.

Without using table, calculate the value of 1 + sec2 30o

A. 2\(\frac{1}{3}\)

B. \(\frac{2}{15}\)

C. \(\frac{5}{3}\)

D. 3\(\frac{1}{2}\)

Detailed Solution

1 + sec2 30o = sec 30o

= \(\frac{2}{\sqrt{3}}\)

\(\frac{(2)^2}{3}\)

= \(\frac{4}{3}\)

1 + sec2 30o = sec 30o

= 1 + \(\frac{4}{3}\)

= 2\(\frac{1}{3}\)
32.

What is the probability that a number chosen at random from the intergers between 1 and 10 inclusive is either a prime or a multiple of 3?

A. \(\frac{7}{10}\)

B. \(\frac{3}{5}\)

C. \(\frac{4}{5}\)

D. \(\frac{3}{10}\)

Detailed Solution

Simple Space: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 = 10)

Prime: (2, 3, 5, 7)

multiples of 3: (3, 6, 9)

Prime or multiples of 3: (2, 3, 5, 6, 7, 9 = 6)

Probability = \(\frac{6}{10}\)

= \(\frac{3}{5}\)
33.

Find the area of a regular hexagon inscribed in a circle of radius 8cm

A. 16\(\sqrt{3}\) cm3

B. 96\(\sqrt{3}\) cm3

C. 192\(\sqrt{3}\) cm3

D. 16\(\sqrt{3}\) cm2

E. 33cm2

Detailed Solution

Area of a regular hexagon = 8 x 8 x sin 60o

= 32 x \(\frac{\sqrt{3}}{2}\)

Area = 16\(\sqrt{3}\) x 6 = 96 \(\sqrt{3}\)cm2
34.

If cos \(\theta\) = \(\frac{\sqrt{3}}{2}\) and \(\theta\) is less than 90o. Calculate \(\frac{\cot(90 - \theta)}{sin^2\theta}\)

A. \(\frac{4}{\sqrt{3}}\)

B. \(4 \sqrt{3}\)

C. \(\sqrt{\frac{3}{2}}\)

D. \(\frac{1}{\sqrt{3}}\)

E. \(\frac{2}{\sqrt{3}}\)

Detailed Solution

\(\frac{\cot (90 - \theta)}{sin^2\theta}\)
\(\cot (90 - \theta) = \tan \theta\)
\(\therefore \frac{\cot (90 - \theta)}{\sin^{2} \theta} = \frac{\tan \theta}{\sin^{2} \theta}\)
\(\tan \theta = \sqrt{3}\)
\(\sin \theta = \frac{1}{2} \implies \sin^{2} \theta = \frac{1}{4}\)
\(\frac{\cot(90 - \theta)}{\sin^{2} \theta} = \frac{\sqrt{3}}{\frac{1}{4}}\)
= \(4 \sqrt{3}\)
35.

A solid sphere of radius 4cm has a mass of 64kg. What will be the mass of a shell of the same metal whose internal and external radii are 2cm and 3cm respectively?

A. 5kg

B. 16kg

C. 19kg

D. 6kg

Detailed Solution

\(\frac{1\sqrt{3}}{(\frac{1}{2})^2}\)

= \(\frac{4}{\sqrt{3}}\)

= \(\frac{\sqrt{3}}{\sqrt{3}}\)

= \(\frac{4\sqrt{3}}{\sqrt{3}}\)

m = 64kg, V = \(\frac{4\pi r^3}{3}\)

= \(\frac{4\pi(4)^3}{3}\)

= \(\frac{256\pi}{3}\) x 10-6m3

density(P) = \(\frac{\text{Mass}}{\text{Volume}}\)

= \(\frac{64}{\frac{256\pi}{3 \times 10^{-6}}}\)

= \(\frac{64 \times 3 \times 10^{-6}}{256}\)

= \(\frac{3}{4 \times 10^{-6}}\)

m = PV = \(\frac{3}{4 \pi \times 10^{-6}}\) x \(\frac{4}{3}\) \(\p
36.

PRSQ is a trapezium of area 14cm2 in which PQ||RS. If PQ = 4cm and SR = 3cm, Find the area of SQR in cm2

A. 7.0

B. 6.0

C. 5.2

D. 5.0

Detailed Solution

Area of trapezium = 14cm2

Area of trapezium = \(\frac{1}{2}\)(a + b)h

14 = \(\frac{1}{2}\)(4 + 3)h

14 = \(\frac{7}{2}\)h

h = \(\frac{14 \times 2}{7}\)

= 4

Area of SQR = \(\frac{1}{2}\)(3 x 4)

= \(\frac{12}{2}\)

= 6.0
37.

A bag contains 4 white balls and 6 red balls. Two balls are taken from the bag without replacement. What is the probability that they are both red?

A. \(\frac{2}{3}\)

B. \(\frac{2}{15}\)

C. \(\frac{1}{2}\)

D. \(\frac{1}{3}\)

Detailed Solution

P(R1) = \(\frac{6}{10}\)

= \(\frac{2}{3}\)

P(R1 n R11) = P(both red)

\(\frac{3}{5}\) x \(\frac{5}{9}\)

= \(\frac{1}{3}\)
38.

Two points X and Y both on latitude 60oS have longitude147oE and 153oW respectively. Find to the nearest kilometer the distance between X and Y measured along the parallel of latitude(Take 2\(\pi\)R = 4 x 104km, where R is the radius of the earth)

A. 16667km

B. 28850km

C. 8333km

D. 2233km

Detailed Solution

Length of an area = \(\frac{\theta}{360}\) x 2\(\pi\)r

Longitude difference = 147 + 153 = 30NoN

distance between xy = \(\frac{\theta}{360}\) x 2\(\pi\)R cos60o

= \(\frac{300}{360}\) x 4 x 104 x \(\frac{1}{2}\)

= 1.667 x 104km(1667 km)
39.

In a class of 120 students, 18 of them scored an A grade in mathematics. If the section representing the A grade students on a pie chart has angle Zo at the centre of the circle, what is Z?

A. 15

B. 27

C. 50

D. 52

E. 54

Detailed Solution

Total students = 120

grade = 18

Zo = \(\frac{18}{120}\) x \(\frac{360}{1}\)

= 54o
40.

If a{\(\frac{x + 1}{x - 2} - \frac{x - 1}{x + 2}\)} = 6x. Find a in its simplest form

A. x2 - 1

B. x2 + 1

C. x2 + 4

D. x2 - 4

E. 1

Detailed Solution

a{\(\frac{x + 1}{x - 2} - \frac{x - 1}{x + 2}\)} = a{\(\frac{(x + 1)(x + 2)- (x - 1)(x - 2)}{(x - 2)(x + 2)}\)}

= 6

\(\frac{6x}{x^2 - 4}\) = 6x

a = x2 - 4
31.

Without using table, calculate the value of 1 + sec2 30o

A. 2\(\frac{1}{3}\)

B. \(\frac{2}{15}\)

C. \(\frac{5}{3}\)

D. 3\(\frac{1}{2}\)

Detailed Solution

1 + sec2 30o = sec 30o

= \(\frac{2}{\sqrt{3}}\)

\(\frac{(2)^2}{3}\)

= \(\frac{4}{3}\)

1 + sec2 30o = sec 30o

= 1 + \(\frac{4}{3}\)

= 2\(\frac{1}{3}\)
32.

What is the probability that a number chosen at random from the intergers between 1 and 10 inclusive is either a prime or a multiple of 3?

A. \(\frac{7}{10}\)

B. \(\frac{3}{5}\)

C. \(\frac{4}{5}\)

D. \(\frac{3}{10}\)

Detailed Solution

Simple Space: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 = 10)

Prime: (2, 3, 5, 7)

multiples of 3: (3, 6, 9)

Prime or multiples of 3: (2, 3, 5, 6, 7, 9 = 6)

Probability = \(\frac{6}{10}\)

= \(\frac{3}{5}\)
33.

Find the area of a regular hexagon inscribed in a circle of radius 8cm

A. 16\(\sqrt{3}\) cm3

B. 96\(\sqrt{3}\) cm3

C. 192\(\sqrt{3}\) cm3

D. 16\(\sqrt{3}\) cm2

E. 33cm2

Detailed Solution

Area of a regular hexagon = 8 x 8 x sin 60o

= 32 x \(\frac{\sqrt{3}}{2}\)

Area = 16\(\sqrt{3}\) x 6 = 96 \(\sqrt{3}\)cm2
34.

If cos \(\theta\) = \(\frac{\sqrt{3}}{2}\) and \(\theta\) is less than 90o. Calculate \(\frac{\cot(90 - \theta)}{sin^2\theta}\)

A. \(\frac{4}{\sqrt{3}}\)

B. \(4 \sqrt{3}\)

C. \(\sqrt{\frac{3}{2}}\)

D. \(\frac{1}{\sqrt{3}}\)

E. \(\frac{2}{\sqrt{3}}\)

Detailed Solution

\(\frac{\cot (90 - \theta)}{sin^2\theta}\)
\(\cot (90 - \theta) = \tan \theta\)
\(\therefore \frac{\cot (90 - \theta)}{\sin^{2} \theta} = \frac{\tan \theta}{\sin^{2} \theta}\)
\(\tan \theta = \sqrt{3}\)
\(\sin \theta = \frac{1}{2} \implies \sin^{2} \theta = \frac{1}{4}\)
\(\frac{\cot(90 - \theta)}{\sin^{2} \theta} = \frac{\sqrt{3}}{\frac{1}{4}}\)
= \(4 \sqrt{3}\)
35.

A solid sphere of radius 4cm has a mass of 64kg. What will be the mass of a shell of the same metal whose internal and external radii are 2cm and 3cm respectively?

A. 5kg

B. 16kg

C. 19kg

D. 6kg

Detailed Solution

\(\frac{1\sqrt{3}}{(\frac{1}{2})^2}\)

= \(\frac{4}{\sqrt{3}}\)

= \(\frac{\sqrt{3}}{\sqrt{3}}\)

= \(\frac{4\sqrt{3}}{\sqrt{3}}\)

m = 64kg, V = \(\frac{4\pi r^3}{3}\)

= \(\frac{4\pi(4)^3}{3}\)

= \(\frac{256\pi}{3}\) x 10-6m3

density(P) = \(\frac{\text{Mass}}{\text{Volume}}\)

= \(\frac{64}{\frac{256\pi}{3 \times 10^{-6}}}\)

= \(\frac{64 \times 3 \times 10^{-6}}{256}\)

= \(\frac{3}{4 \times 10^{-6}}\)

m = PV = \(\frac{3}{4 \pi \times 10^{-6}}\) x \(\frac{4}{3}\) \(\p
36.

PRSQ is a trapezium of area 14cm2 in which PQ||RS. If PQ = 4cm and SR = 3cm, Find the area of SQR in cm2

A. 7.0

B. 6.0

C. 5.2

D. 5.0

Detailed Solution

Area of trapezium = 14cm2

Area of trapezium = \(\frac{1}{2}\)(a + b)h

14 = \(\frac{1}{2}\)(4 + 3)h

14 = \(\frac{7}{2}\)h

h = \(\frac{14 \times 2}{7}\)

= 4

Area of SQR = \(\frac{1}{2}\)(3 x 4)

= \(\frac{12}{2}\)

= 6.0
37.

A bag contains 4 white balls and 6 red balls. Two balls are taken from the bag without replacement. What is the probability that they are both red?

A. \(\frac{2}{3}\)

B. \(\frac{2}{15}\)

C. \(\frac{1}{2}\)

D. \(\frac{1}{3}\)

Detailed Solution

P(R1) = \(\frac{6}{10}\)

= \(\frac{2}{3}\)

P(R1 n R11) = P(both red)

\(\frac{3}{5}\) x \(\frac{5}{9}\)

= \(\frac{1}{3}\)
38.

Two points X and Y both on latitude 60oS have longitude147oE and 153oW respectively. Find to the nearest kilometer the distance between X and Y measured along the parallel of latitude(Take 2\(\pi\)R = 4 x 104km, where R is the radius of the earth)

A. 16667km

B. 28850km

C. 8333km

D. 2233km

Detailed Solution

Length of an area = \(\frac{\theta}{360}\) x 2\(\pi\)r

Longitude difference = 147 + 153 = 30NoN

distance between xy = \(\frac{\theta}{360}\) x 2\(\pi\)R cos60o

= \(\frac{300}{360}\) x 4 x 104 x \(\frac{1}{2}\)

= 1.667 x 104km(1667 km)
39.

In a class of 120 students, 18 of them scored an A grade in mathematics. If the section representing the A grade students on a pie chart has angle Zo at the centre of the circle, what is Z?

A. 15

B. 27

C. 50

D. 52

E. 54

Detailed Solution

Total students = 120

grade = 18

Zo = \(\frac{18}{120}\) x \(\frac{360}{1}\)

= 54o
40.

If a{\(\frac{x + 1}{x - 2} - \frac{x - 1}{x + 2}\)} = 6x. Find a in its simplest form

A. x2 - 1

B. x2 + 1

C. x2 + 4

D. x2 - 4

E. 1

Detailed Solution

a{\(\frac{x + 1}{x - 2} - \frac{x - 1}{x + 2}\)} = a{\(\frac{(x + 1)(x + 2)- (x - 1)(x - 2)}{(x - 2)(x + 2)}\)}

= 6

\(\frac{6x}{x^2 - 4}\) = 6x

a = x2 - 4