31 - 40 of 47 Questions
# | Question | Ans |
---|---|---|
31. |
Without using table, calculate the value of 1 + sec2 30o A. 2\(\frac{1}{3}\) B. \(\frac{2}{15}\) C. \(\frac{5}{3}\) D. 3\(\frac{1}{2}\) Detailed Solution1 + sec2 30o = sec 30o= \(\frac{2}{\sqrt{3}}\) \(\frac{(2)^2}{3}\) = \(\frac{4}{3}\) 1 + sec2 30o = sec 30o = 1 + \(\frac{4}{3}\) = 2\(\frac{1}{3}\) |
|
32. |
What is the probability that a number chosen at random from the intergers between 1 and 10 inclusive is either a prime or a multiple of 3? A. \(\frac{7}{10}\) B. \(\frac{3}{5}\) C. \(\frac{4}{5}\) D. \(\frac{3}{10}\) Detailed SolutionSimple Space: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 = 10)Prime: (2, 3, 5, 7) multiples of 3: (3, 6, 9) Prime or multiples of 3: (2, 3, 5, 6, 7, 9 = 6) Probability = \(\frac{6}{10}\) = \(\frac{3}{5}\) |
|
33. |
Find the area of a regular hexagon inscribed in a circle of radius 8cm A. 16\(\sqrt{3}\) cm3 B. 96\(\sqrt{3}\) cm3 C. 192\(\sqrt{3}\) cm3 D. 16\(\sqrt{3}\) cm2 E. 33cm2 Detailed SolutionArea of a regular hexagon = 8 x 8 x sin 60o= 32 x \(\frac{\sqrt{3}}{2}\) Area = 16\(\sqrt{3}\) x 6 = 96 \(\sqrt{3}\)cm2 |
|
34. |
If cos \(\theta\) = \(\frac{\sqrt{3}}{2}\) and \(\theta\) is less than 90o. Calculate \(\frac{\cot(90 - \theta)}{sin^2\theta}\) A. \(\frac{4}{\sqrt{3}}\) B. \(4 \sqrt{3}\) C. \(\sqrt{\frac{3}{2}}\) D. \(\frac{1}{\sqrt{3}}\) E. \(\frac{2}{\sqrt{3}}\) Detailed Solution\(\frac{\cot (90 - \theta)}{sin^2\theta}\)\(\cot (90 - \theta) = \tan \theta\) \(\therefore \frac{\cot (90 - \theta)}{\sin^{2} \theta} = \frac{\tan \theta}{\sin^{2} \theta}\) \(\tan \theta = \sqrt{3}\) \(\sin \theta = \frac{1}{2} \implies \sin^{2} \theta = \frac{1}{4}\) \(\frac{\cot(90 - \theta)}{\sin^{2} \theta} = \frac{\sqrt{3}}{\frac{1}{4}}\) = \(4 \sqrt{3}\) |
|
35. |
A solid sphere of radius 4cm has a mass of 64kg. What will be the mass of a shell of the same metal whose internal and external radii are 2cm and 3cm respectively? A. 5kg B. 16kg C. 19kg D. 6kg Detailed Solution\(\frac{1\sqrt{3}}{(\frac{1}{2})^2}\)= \(\frac{4}{\sqrt{3}}\) = \(\frac{\sqrt{3}}{\sqrt{3}}\) = \(\frac{4\sqrt{3}}{\sqrt{3}}\) m = 64kg, V = \(\frac{4\pi r^3}{3}\) = \(\frac{4\pi(4)^3}{3}\) = \(\frac{256\pi}{3}\) x 10-6m3 density(P) = \(\frac{\text{Mass}}{\text{Volume}}\) = \(\frac{64}{\frac{256\pi}{3 \times 10^{-6}}}\) = \(\frac{64 \times 3 \times 10^{-6}}{256}\) = \(\frac{3}{4 \times 10^{-6}}\) m = PV = \(\frac{3}{4 \pi \times 10^{-6}}\) x \(\frac{4}{3}\) \(\p |
|
36. |
PRSQ is a trapezium of area 14cm2 in which PQ||RS. If PQ = 4cm and SR = 3cm, Find the area of SQR in cm2 A. 7.0 B. 6.0 C. 5.2 D. 5.0 Detailed SolutionArea of trapezium = 14cm2Area of trapezium = \(\frac{1}{2}\)(a + b)h 14 = \(\frac{1}{2}\)(4 + 3)h 14 = \(\frac{7}{2}\)h h = \(\frac{14 \times 2}{7}\) = 4 Area of SQR = \(\frac{1}{2}\)(3 x 4) = \(\frac{12}{2}\) = 6.0 |
|
37. |
A bag contains 4 white balls and 6 red balls. Two balls are taken from the bag without replacement. What is the probability that they are both red? A. \(\frac{2}{3}\) B. \(\frac{2}{15}\) C. \(\frac{1}{2}\) D. \(\frac{1}{3}\) Detailed SolutionP(R1) = \(\frac{6}{10}\)= \(\frac{2}{3}\) P(R1 n R11) = P(both red) \(\frac{3}{5}\) x \(\frac{5}{9}\) = \(\frac{1}{3}\) |
|
38. |
Two points X and Y both on latitude 60oS have longitude147oE and 153oW respectively. Find to the nearest kilometer the distance between X and Y measured along the parallel of latitude(Take 2\(\pi\)R = 4 x 104km, where R is the radius of the earth) A. 16667km B. 28850km C. 8333km D. 2233km Detailed SolutionLength of an area = \(\frac{\theta}{360}\) x 2\(\pi\)rLongitude difference = 147 + 153 = 30NoN distance between xy = \(\frac{\theta}{360}\) x 2\(\pi\)R cos60o = \(\frac{300}{360}\) x 4 x 104 x \(\frac{1}{2}\) = 1.667 x 104km(1667 km) |
|
39. |
In a class of 120 students, 18 of them scored an A grade in mathematics. If the section representing the A grade students on a pie chart has angle Zo at the centre of the circle, what is Z? A. 15 B. 27 C. 50 D. 52 E. 54 Detailed SolutionTotal students = 120grade = 18 Zo = \(\frac{18}{120}\) x \(\frac{360}{1}\) = 54o |
|
40. |
If a{\(\frac{x + 1}{x - 2} - \frac{x - 1}{x + 2}\)} = 6x. Find a in its simplest form A. x2 - 1 B. x2 + 1 C. x2 + 4 D. x2 - 4 E. 1 Detailed Solutiona{\(\frac{x + 1}{x - 2} - \frac{x - 1}{x + 2}\)} = a{\(\frac{(x + 1)(x + 2)- (x - 1)(x - 2)}{(x - 2)(x + 2)}\)}= 6 \(\frac{6x}{x^2 - 4}\) = 6x a = x2 - 4 |
31. |
Without using table, calculate the value of 1 + sec2 30o A. 2\(\frac{1}{3}\) B. \(\frac{2}{15}\) C. \(\frac{5}{3}\) D. 3\(\frac{1}{2}\) Detailed Solution1 + sec2 30o = sec 30o= \(\frac{2}{\sqrt{3}}\) \(\frac{(2)^2}{3}\) = \(\frac{4}{3}\) 1 + sec2 30o = sec 30o = 1 + \(\frac{4}{3}\) = 2\(\frac{1}{3}\) |
|
32. |
What is the probability that a number chosen at random from the intergers between 1 and 10 inclusive is either a prime or a multiple of 3? A. \(\frac{7}{10}\) B. \(\frac{3}{5}\) C. \(\frac{4}{5}\) D. \(\frac{3}{10}\) Detailed SolutionSimple Space: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 = 10)Prime: (2, 3, 5, 7) multiples of 3: (3, 6, 9) Prime or multiples of 3: (2, 3, 5, 6, 7, 9 = 6) Probability = \(\frac{6}{10}\) = \(\frac{3}{5}\) |
|
33. |
Find the area of a regular hexagon inscribed in a circle of radius 8cm A. 16\(\sqrt{3}\) cm3 B. 96\(\sqrt{3}\) cm3 C. 192\(\sqrt{3}\) cm3 D. 16\(\sqrt{3}\) cm2 E. 33cm2 Detailed SolutionArea of a regular hexagon = 8 x 8 x sin 60o= 32 x \(\frac{\sqrt{3}}{2}\) Area = 16\(\sqrt{3}\) x 6 = 96 \(\sqrt{3}\)cm2 |
|
34. |
If cos \(\theta\) = \(\frac{\sqrt{3}}{2}\) and \(\theta\) is less than 90o. Calculate \(\frac{\cot(90 - \theta)}{sin^2\theta}\) A. \(\frac{4}{\sqrt{3}}\) B. \(4 \sqrt{3}\) C. \(\sqrt{\frac{3}{2}}\) D. \(\frac{1}{\sqrt{3}}\) E. \(\frac{2}{\sqrt{3}}\) Detailed Solution\(\frac{\cot (90 - \theta)}{sin^2\theta}\)\(\cot (90 - \theta) = \tan \theta\) \(\therefore \frac{\cot (90 - \theta)}{\sin^{2} \theta} = \frac{\tan \theta}{\sin^{2} \theta}\) \(\tan \theta = \sqrt{3}\) \(\sin \theta = \frac{1}{2} \implies \sin^{2} \theta = \frac{1}{4}\) \(\frac{\cot(90 - \theta)}{\sin^{2} \theta} = \frac{\sqrt{3}}{\frac{1}{4}}\) = \(4 \sqrt{3}\) |
|
35. |
A solid sphere of radius 4cm has a mass of 64kg. What will be the mass of a shell of the same metal whose internal and external radii are 2cm and 3cm respectively? A. 5kg B. 16kg C. 19kg D. 6kg Detailed Solution\(\frac{1\sqrt{3}}{(\frac{1}{2})^2}\)= \(\frac{4}{\sqrt{3}}\) = \(\frac{\sqrt{3}}{\sqrt{3}}\) = \(\frac{4\sqrt{3}}{\sqrt{3}}\) m = 64kg, V = \(\frac{4\pi r^3}{3}\) = \(\frac{4\pi(4)^3}{3}\) = \(\frac{256\pi}{3}\) x 10-6m3 density(P) = \(\frac{\text{Mass}}{\text{Volume}}\) = \(\frac{64}{\frac{256\pi}{3 \times 10^{-6}}}\) = \(\frac{64 \times 3 \times 10^{-6}}{256}\) = \(\frac{3}{4 \times 10^{-6}}\) m = PV = \(\frac{3}{4 \pi \times 10^{-6}}\) x \(\frac{4}{3}\) \(\p |
36. |
PRSQ is a trapezium of area 14cm2 in which PQ||RS. If PQ = 4cm and SR = 3cm, Find the area of SQR in cm2 A. 7.0 B. 6.0 C. 5.2 D. 5.0 Detailed SolutionArea of trapezium = 14cm2Area of trapezium = \(\frac{1}{2}\)(a + b)h 14 = \(\frac{1}{2}\)(4 + 3)h 14 = \(\frac{7}{2}\)h h = \(\frac{14 \times 2}{7}\) = 4 Area of SQR = \(\frac{1}{2}\)(3 x 4) = \(\frac{12}{2}\) = 6.0 |
|
37. |
A bag contains 4 white balls and 6 red balls. Two balls are taken from the bag without replacement. What is the probability that they are both red? A. \(\frac{2}{3}\) B. \(\frac{2}{15}\) C. \(\frac{1}{2}\) D. \(\frac{1}{3}\) Detailed SolutionP(R1) = \(\frac{6}{10}\)= \(\frac{2}{3}\) P(R1 n R11) = P(both red) \(\frac{3}{5}\) x \(\frac{5}{9}\) = \(\frac{1}{3}\) |
|
38. |
Two points X and Y both on latitude 60oS have longitude147oE and 153oW respectively. Find to the nearest kilometer the distance between X and Y measured along the parallel of latitude(Take 2\(\pi\)R = 4 x 104km, where R is the radius of the earth) A. 16667km B. 28850km C. 8333km D. 2233km Detailed SolutionLength of an area = \(\frac{\theta}{360}\) x 2\(\pi\)rLongitude difference = 147 + 153 = 30NoN distance between xy = \(\frac{\theta}{360}\) x 2\(\pi\)R cos60o = \(\frac{300}{360}\) x 4 x 104 x \(\frac{1}{2}\) = 1.667 x 104km(1667 km) |
|
39. |
In a class of 120 students, 18 of them scored an A grade in mathematics. If the section representing the A grade students on a pie chart has angle Zo at the centre of the circle, what is Z? A. 15 B. 27 C. 50 D. 52 E. 54 Detailed SolutionTotal students = 120grade = 18 Zo = \(\frac{18}{120}\) x \(\frac{360}{1}\) = 54o |
|
40. |
If a{\(\frac{x + 1}{x - 2} - \frac{x - 1}{x + 2}\)} = 6x. Find a in its simplest form A. x2 - 1 B. x2 + 1 C. x2 + 4 D. x2 - 4 E. 1 Detailed Solutiona{\(\frac{x + 1}{x - 2} - \frac{x - 1}{x + 2}\)} = a{\(\frac{(x + 1)(x + 2)- (x - 1)(x - 2)}{(x - 2)(x + 2)}\)}= 6 \(\frac{6x}{x^2 - 4}\) = 6x a = x2 - 4 |