11 - 20 of 47 Questions
# | Question | Ans |
---|---|---|
11. |
Find the values of p for which the equation x2 - (p - 2)x + 2p + 1 = 0 A. (21, 0) B. (0, 12) C. (1, 2) D. (3, 4) E. (4, 5) Detailed SolutionEqual roots implies b2 - 4ac = 0a = 1b = - (p - 2), c = 2p + 1 [-(p - 2)]2 - 4 x 1 x (2p + 1) = 0 p2 - 4p + 4 - 4(2p + 1) = 0 p2 - 4p = 4 - 8p - 4 = 0 p2 - 12p = 0 p(p - 12) = 0 p = 0 or 12 |
|
12. |
If \(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ... \), find \(\frac{1}{e^{\frac{1}{2}}}\) A. 1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + ......... B. 1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{2.4.3}\) + .. C. 1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2}\) + \(\frac{x^3}{1.2.3}\) + \(\frac{x^4}{1.23.4}\) + ......... D. 1 - x + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + ......... E. 1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{1.2.6}\) + ......... Detailed Solution\(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ...\)\(\frac{1}{e^{\frac{1}{2}}} = e^{-\frac{1}{2}}\) \(e^{-\frac{1}{2}} = 1 - \frac{x}{2} + \frac{x^{2}}{1.2^{3}} - \frac{x^{3}}{1.2^{4}.3} + ... \) |
|
13. |
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\) is equal to A. 1 B. (\(\sqrt{2} + 4\sqrt{2}\)) C. (6\(\sqrt{2}\) D. 8 Detailed Solution\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\)\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2}) = \sqrt{3} - \sqrt[4]{6} + \sqrt[4]{6} - \sqrt{2}\) = \(\sqrt{3} - \sqrt{2}\) \((\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 + \sqrt{6} - \sqrt{6} - 2\) = \(3 - 2 = 1\) |
|
14. |
In a restaurant, the cost of providing a particular type of food is partly constant and partially inversely proportional to the number of people. If cost per head for 100 people is 30k and the cost for 40 people is 60k, Find the cost for 50 people? A. 15k B. 20k C. 50k D. 40k E. 45k Detailed SolutionC = a + k\(\frac{1}{N}\) = c = \(\frac{aN + k}{N}\) CN = aN + K 30(100) = a(100) + k 3000 = 100a + k.......(i) 60(40) = a(40) + k 2400 = 40a + k.......(ii) eqn (i) - eqn (ii) 600 = 60a a = 10 subt. for a in eqn (i) 3000 = 100(10) + K 3000 - 1000 = k k = 2000 CN = 10N + 2000. when N = 50, 50C = 10(50) + 2000 50C = 500 + 2000 C = \(\frac{2500}{50}\) = 50k |
|
15. |
The factors of 9 - (x2 - 3x - 1)2 are A. -(x - 4)(x + 1) (x - 1)(x - 2) B. (x - 4)(x - 2) (x - 1)(x + 1) C. -(x - 2)(x + 1) (x - 2) (x - 1) D. (x - 2)(x + 2) (x - 1)(x + 1) Detailed Solution9 - (x2 - 3x - 1)2 = [3 - (x2 - 3x - 1)] [3 + (x2 - 3x - 1)]= (3 - x2 + 3x + 1)(3 + x2 - 3x - 1) = (4 + 3x - x2)(x2 - 3x + 2) = (4 - x)(1 + x)(x - 1)(x - 2) = -(x - 4)(x + 1) (x - 1)(x - 2) |
|
16. |
If 32y + 6(3y) = 27. Find y A. 3 B. -1 C. 2 D. -3 E. 1 Detailed Solution32y + 6(3y) = 27This can be rewritten as (3y)2 + 6(3y) = 27 Let 3y = x x2 + 6x - 27 = 0 (x + 9)(x - 3) = 0 when x - 3 = 0, x = 3 sub. for x in 3y = x 3y = 3 log33 = y y = 1 |
|
17. |
Factorize abx2 + 8y - 4bx - 2axy A. (ax - 4)(bx - 2y) B. (ax + b)(x - 8y) C. (ax - 2y)(bx - 4) D. (bx - 4)(ax - 2y) E. (abx - 4)(x - 2y) Detailed Solutionabx2 + 8y - 4bx - 2axy = (abx2 - 4bx) + (8y - 2axy)= bx(ax - 4) 2y(ax - 4) 2y(ax - 4) = (bx - 2y)(ax - 4) |
|
18. |
At what real value of x do the curves whose equations are y = x3 + x and y = x2 + 1 intersect? A. -2 B. 2 C. -1 D. 9 E. 1 Detailed Solutiony = x3 + x and y = x2 + 1\(\begin{array}{c|c} x & -2 & -1 & 0 & 1 & 2 \\ \hline Y = x^3 + x & -10 & -2 & 0 & 2 & 10 \\ \hline y = x^2 + 1 & 5 & 2 & 1 & 2 & 5\end{array}\) The curves intersect at x = 1 |
|
19. |
If the quadratic function 3x2 - 7x + R is a perfect square, find R A. \(\frac{49}{24}\) B. \(\frac{49}{12}\) C. \(\frac{49}{13}\) D. \(\frac{49}{3}\) E. \(\frac{49}{36}\) Detailed Solution3x2 - 7x + R. Computing the square, we havex2 - \(\frac{7}{3}\) = -\(\frac{R}{3}\) (\(\frac{x}{1} - \frac{7}{6}\))2 = -\(\frac{R}{3}\) + \(\frac{49}{36}\) \(\frac{-R}{3}\) + \(\frac{49}{36}\) = 0 R = \(\frac{49}{36}\) x \(\frac{3}{1}\) = \(\frac{49}{12}\) |
|
20. |
Solve for (x, y) in the equation 2x + y = 4: x^2 + xy = -12 A. (6, -8): (-2, 8) B. (3, -4): (-1, 4) C. (8, -4): (-1, 4) D. (-8, 6): (8, -2) E. (-4, 3): (4, -1) Detailed Solution2x + y = 4......(i)x^2 + xy = -12........(ii) from eqn (i), y = 4 - 2x = x2 + x(4 - 2x) = -12 x2 + 4x - 2x2 = -12 4x - x2 = -12 x2 - 4x - 12 = 0 (x - 6)(x + 2) = 0 sub. for x = 6, in eqn (i) y = -8, 8 =(6,-8); (-2, 8) |
11. |
Find the values of p for which the equation x2 - (p - 2)x + 2p + 1 = 0 A. (21, 0) B. (0, 12) C. (1, 2) D. (3, 4) E. (4, 5) Detailed SolutionEqual roots implies b2 - 4ac = 0a = 1b = - (p - 2), c = 2p + 1 [-(p - 2)]2 - 4 x 1 x (2p + 1) = 0 p2 - 4p + 4 - 4(2p + 1) = 0 p2 - 4p = 4 - 8p - 4 = 0 p2 - 12p = 0 p(p - 12) = 0 p = 0 or 12 |
|
12. |
If \(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ... \), find \(\frac{1}{e^{\frac{1}{2}}}\) A. 1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + ......... B. 1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{2.4.3}\) + .. C. 1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2}\) + \(\frac{x^3}{1.2.3}\) + \(\frac{x^4}{1.23.4}\) + ......... D. 1 - x + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + ......... E. 1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{1.2.6}\) + ......... Detailed Solution\(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ...\)\(\frac{1}{e^{\frac{1}{2}}} = e^{-\frac{1}{2}}\) \(e^{-\frac{1}{2}} = 1 - \frac{x}{2} + \frac{x^{2}}{1.2^{3}} - \frac{x^{3}}{1.2^{4}.3} + ... \) |
|
13. |
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\) is equal to A. 1 B. (\(\sqrt{2} + 4\sqrt{2}\)) C. (6\(\sqrt{2}\) D. 8 Detailed Solution\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\)\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2}) = \sqrt{3} - \sqrt[4]{6} + \sqrt[4]{6} - \sqrt{2}\) = \(\sqrt{3} - \sqrt{2}\) \((\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 + \sqrt{6} - \sqrt{6} - 2\) = \(3 - 2 = 1\) |
|
14. |
In a restaurant, the cost of providing a particular type of food is partly constant and partially inversely proportional to the number of people. If cost per head for 100 people is 30k and the cost for 40 people is 60k, Find the cost for 50 people? A. 15k B. 20k C. 50k D. 40k E. 45k Detailed SolutionC = a + k\(\frac{1}{N}\) = c = \(\frac{aN + k}{N}\) CN = aN + K 30(100) = a(100) + k 3000 = 100a + k.......(i) 60(40) = a(40) + k 2400 = 40a + k.......(ii) eqn (i) - eqn (ii) 600 = 60a a = 10 subt. for a in eqn (i) 3000 = 100(10) + K 3000 - 1000 = k k = 2000 CN = 10N + 2000. when N = 50, 50C = 10(50) + 2000 50C = 500 + 2000 C = \(\frac{2500}{50}\) = 50k |
|
15. |
The factors of 9 - (x2 - 3x - 1)2 are A. -(x - 4)(x + 1) (x - 1)(x - 2) B. (x - 4)(x - 2) (x - 1)(x + 1) C. -(x - 2)(x + 1) (x - 2) (x - 1) D. (x - 2)(x + 2) (x - 1)(x + 1) Detailed Solution9 - (x2 - 3x - 1)2 = [3 - (x2 - 3x - 1)] [3 + (x2 - 3x - 1)]= (3 - x2 + 3x + 1)(3 + x2 - 3x - 1) = (4 + 3x - x2)(x2 - 3x + 2) = (4 - x)(1 + x)(x - 1)(x - 2) = -(x - 4)(x + 1) (x - 1)(x - 2) |
16. |
If 32y + 6(3y) = 27. Find y A. 3 B. -1 C. 2 D. -3 E. 1 Detailed Solution32y + 6(3y) = 27This can be rewritten as (3y)2 + 6(3y) = 27 Let 3y = x x2 + 6x - 27 = 0 (x + 9)(x - 3) = 0 when x - 3 = 0, x = 3 sub. for x in 3y = x 3y = 3 log33 = y y = 1 |
|
17. |
Factorize abx2 + 8y - 4bx - 2axy A. (ax - 4)(bx - 2y) B. (ax + b)(x - 8y) C. (ax - 2y)(bx - 4) D. (bx - 4)(ax - 2y) E. (abx - 4)(x - 2y) Detailed Solutionabx2 + 8y - 4bx - 2axy = (abx2 - 4bx) + (8y - 2axy)= bx(ax - 4) 2y(ax - 4) 2y(ax - 4) = (bx - 2y)(ax - 4) |
|
18. |
At what real value of x do the curves whose equations are y = x3 + x and y = x2 + 1 intersect? A. -2 B. 2 C. -1 D. 9 E. 1 Detailed Solutiony = x3 + x and y = x2 + 1\(\begin{array}{c|c} x & -2 & -1 & 0 & 1 & 2 \\ \hline Y = x^3 + x & -10 & -2 & 0 & 2 & 10 \\ \hline y = x^2 + 1 & 5 & 2 & 1 & 2 & 5\end{array}\) The curves intersect at x = 1 |
|
19. |
If the quadratic function 3x2 - 7x + R is a perfect square, find R A. \(\frac{49}{24}\) B. \(\frac{49}{12}\) C. \(\frac{49}{13}\) D. \(\frac{49}{3}\) E. \(\frac{49}{36}\) Detailed Solution3x2 - 7x + R. Computing the square, we havex2 - \(\frac{7}{3}\) = -\(\frac{R}{3}\) (\(\frac{x}{1} - \frac{7}{6}\))2 = -\(\frac{R}{3}\) + \(\frac{49}{36}\) \(\frac{-R}{3}\) + \(\frac{49}{36}\) = 0 R = \(\frac{49}{36}\) x \(\frac{3}{1}\) = \(\frac{49}{12}\) |
|
20. |
Solve for (x, y) in the equation 2x + y = 4: x^2 + xy = -12 A. (6, -8): (-2, 8) B. (3, -4): (-1, 4) C. (8, -4): (-1, 4) D. (-8, 6): (8, -2) E. (-4, 3): (4, -1) Detailed Solution2x + y = 4......(i)x^2 + xy = -12........(ii) from eqn (i), y = 4 - 2x = x2 + x(4 - 2x) = -12 x2 + 4x - 2x2 = -12 4x - x2 = -12 x2 - 4x - 12 = 0 (x - 6)(x + 2) = 0 sub. for x = 6, in eqn (i) y = -8, 8 =(6,-8); (-2, 8) |