Year : 
1985
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 47 Questions

# Question Ans
11.

Find the values of p for which the equation x2 - (p - 2)x + 2p + 1 = 0

A. (21, 0)

B. (0, 12)

C. (1, 2)

D. (3, 4)

E. (4, 5)

Detailed Solution

Equal roots implies b2 - 4ac = 0

a = 1b = - (p - 2), c = 2p + 1

[-(p - 2)]2 - 4 x 1 x (2p + 1) = 0

p2 - 4p + 4 - 4(2p + 1) = 0

p2 - 4p = 4 - 8p - 4 = 0

p2 - 12p = 0

p(p - 12) = 0

p = 0 or 12
12.

If \(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ... \), find \(\frac{1}{e^{\frac{1}{2}}}\)

A. 1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + .........

B. 1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{2.4.3}\) + ..

C. 1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2}\) + \(\frac{x^3}{1.2.3}\) + \(\frac{x^4}{1.23.4}\) + .........

D. 1 - x + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + .........

E. 1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{1.2.6}\) + .........

Detailed Solution

\(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ...\)
\(\frac{1}{e^{\frac{1}{2}}} = e^{-\frac{1}{2}}\)
\(e^{-\frac{1}{2}} = 1 - \frac{x}{2} + \frac{x^{2}}{1.2^{3}} - \frac{x^{3}}{1.2^{4}.3} + ... \)
13.

\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\) is equal to

A. 1

B. (\(\sqrt{2} + 4\sqrt{2}\))

C. (6\(\sqrt{2}\)

D. 8

Detailed Solution

\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\)
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2}) = \sqrt{3} - \sqrt[4]{6} + \sqrt[4]{6} - \sqrt{2}\)
= \(\sqrt{3} - \sqrt{2}\)
\((\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 + \sqrt{6} - \sqrt{6} - 2\)
= \(3 - 2 = 1\)
14.

In a restaurant, the cost of providing a particular type of food is partly constant and partially inversely proportional to the number of people. If cost per head for 100 people is 30k and the cost for 40 people is 60k, Find the cost for 50 people?

A. 15k

B. 20k

C. 50k

D. 40k

E. 45k

Detailed Solution

C = a + k

\(\frac{1}{N}\) = c

= \(\frac{aN + k}{N}\)

CN = aN + K

30(100) = a(100) + k

3000 = 100a + k.......(i)

60(40) = a(40) + k

2400 = 40a + k.......(ii)

eqn (i) - eqn (ii)

600 = 60a

a = 10

subt. for a in eqn (i) 3000 = 100(10) + K

3000 - 1000 = k

k = 2000

CN = 10N + 2000. when N = 50,

50C = 10(50) + 2000

50C = 500 + 2000

C = \(\frac{2500}{50}\)

= 50k
15.

The factors of 9 - (x2 - 3x - 1)2 are

A. -(x - 4)(x + 1) (x - 1)(x - 2)

B. (x - 4)(x - 2) (x - 1)(x + 1)

C. -(x - 2)(x + 1) (x - 2) (x - 1)

D. (x - 2)(x + 2) (x - 1)(x + 1)

Detailed Solution

9 - (x2 - 3x - 1)2 = [3 - (x2 - 3x - 1)] [3 + (x2 - 3x - 1)]

= (3 - x2 + 3x + 1)(3 + x2 - 3x - 1)

= (4 + 3x - x2)(x2 - 3x + 2)

= (4 - x)(1 + x)(x - 1)(x - 2)

= -(x - 4)(x + 1) (x - 1)(x - 2)
16.

If 32y + 6(3y) = 27. Find y

A. 3

B. -1

C. 2

D. -3

E. 1

Detailed Solution

32y + 6(3y) = 27

This can be rewritten as (3y)2 + 6(3y) = 27

Let 3y = x

x2 + 6x - 27 = 0

(x + 9)(x - 3) = 0

when x - 3 = 0, x = 3

sub. for x in 3y = x

3y = 3

log33 = y

y = 1
17.

Factorize abx2 + 8y - 4bx - 2axy

A. (ax - 4)(bx - 2y)

B. (ax + b)(x - 8y)

C. (ax - 2y)(bx - 4)

D. (bx - 4)(ax - 2y)

E. (abx - 4)(x - 2y)

Detailed Solution

abx2 + 8y - 4bx - 2axy = (abx2 - 4bx) + (8y - 2axy)

= bx(ax - 4) 2y(ax - 4) 2y(ax - 4)

= (bx - 2y)(ax - 4)
18.

At what real value of x do the curves whose equations are y = x3 + x and y = x2 + 1 intersect?

A. -2

B. 2

C. -1

D. 9

E. 1

Detailed Solution

y = x3 + x and y = x2 + 1
\(\begin{array}{c|c} x & -2 & -1 & 0 & 1 & 2 \\ \hline Y = x^3 + x & -10 & -2 & 0 & 2 & 10 \\ \hline y = x^2 + 1 & 5 & 2 & 1 & 2 & 5\end{array}\)
The curves intersect at x = 1
19.

If the quadratic function 3x2 - 7x + R is a perfect square, find R

A. \(\frac{49}{24}\)

B. \(\frac{49}{12}\)

C. \(\frac{49}{13}\)

D. \(\frac{49}{3}\)

E. \(\frac{49}{36}\)

Detailed Solution

3x2 - 7x + R. Computing the square, we have
x2 - \(\frac{7}{3}\) = -\(\frac{R}{3}\)

(\(\frac{x}{1} - \frac{7}{6}\))2 = -\(\frac{R}{3}\) + \(\frac{49}{36}\)

\(\frac{-R}{3}\) + \(\frac{49}{36}\) = 0

R = \(\frac{49}{36}\) x \(\frac{3}{1}\)

= \(\frac{49}{12}\)
20.

Solve for (x, y) in the equation 2x + y = 4: x^2 + xy = -12

A. (6, -8): (-2, 8)

B. (3, -4): (-1, 4)

C. (8, -4): (-1, 4)

D. (-8, 6): (8, -2)

E. (-4, 3): (4, -1)

Detailed Solution

2x + y = 4......(i)

x^2 + xy = -12........(ii)

from eqn (i), y = 4 - 2x

= x2 + x(4 - 2x)

= -12

x2 + 4x - 2x2 = -12

4x - x2 = -12

x2 - 4x - 12 = 0

(x - 6)(x + 2) = 0

sub. for x = 6, in eqn (i) y = -8, 8

=(6,-8); (-2, 8)
11.

Find the values of p for which the equation x2 - (p - 2)x + 2p + 1 = 0

A. (21, 0)

B. (0, 12)

C. (1, 2)

D. (3, 4)

E. (4, 5)

Detailed Solution

Equal roots implies b2 - 4ac = 0

a = 1b = - (p - 2), c = 2p + 1

[-(p - 2)]2 - 4 x 1 x (2p + 1) = 0

p2 - 4p + 4 - 4(2p + 1) = 0

p2 - 4p = 4 - 8p - 4 = 0

p2 - 12p = 0

p(p - 12) = 0

p = 0 or 12
12.

If \(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ... \), find \(\frac{1}{e^{\frac{1}{2}}}\)

A. 1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + .........

B. 1 - \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{2.4.3}\) + ..

C. 1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2}\) + \(\frac{x^3}{1.2.3}\) + \(\frac{x^4}{1.23.4}\) + .........

D. 1 - x + \(\frac{x^2}{1.2^3}\) + \(\frac{x^3}{2^4.3}\) + .........

E. 1 + \(\frac{x}{2}\) + \(\frac{x^2}{1.2^3}\) + \(\frac{x^4}{1.2.6}\) + .........

Detailed Solution

\(e^{x} = 1 + x + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + ...\)
\(\frac{1}{e^{\frac{1}{2}}} = e^{-\frac{1}{2}}\)
\(e^{-\frac{1}{2}} = 1 - \frac{x}{2} + \frac{x^{2}}{1.2^{3}} - \frac{x^{3}}{1.2^{4}.3} + ... \)
13.

\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\) is equal to

A. 1

B. (\(\sqrt{2} + 4\sqrt{2}\))

C. (6\(\sqrt{2}\)

D. 8

Detailed Solution

\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2})(\sqrt{3} + \sqrt{2})\)
\((\sqrt[4]{3} + \sqrt[4]{2})(\sqrt[4]{3} - \sqrt[4]{2}) = \sqrt{3} - \sqrt[4]{6} + \sqrt[4]{6} - \sqrt{2}\)
= \(\sqrt{3} - \sqrt{2}\)
\((\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 + \sqrt{6} - \sqrt{6} - 2\)
= \(3 - 2 = 1\)
14.

In a restaurant, the cost of providing a particular type of food is partly constant and partially inversely proportional to the number of people. If cost per head for 100 people is 30k and the cost for 40 people is 60k, Find the cost for 50 people?

A. 15k

B. 20k

C. 50k

D. 40k

E. 45k

Detailed Solution

C = a + k

\(\frac{1}{N}\) = c

= \(\frac{aN + k}{N}\)

CN = aN + K

30(100) = a(100) + k

3000 = 100a + k.......(i)

60(40) = a(40) + k

2400 = 40a + k.......(ii)

eqn (i) - eqn (ii)

600 = 60a

a = 10

subt. for a in eqn (i) 3000 = 100(10) + K

3000 - 1000 = k

k = 2000

CN = 10N + 2000. when N = 50,

50C = 10(50) + 2000

50C = 500 + 2000

C = \(\frac{2500}{50}\)

= 50k
15.

The factors of 9 - (x2 - 3x - 1)2 are

A. -(x - 4)(x + 1) (x - 1)(x - 2)

B. (x - 4)(x - 2) (x - 1)(x + 1)

C. -(x - 2)(x + 1) (x - 2) (x - 1)

D. (x - 2)(x + 2) (x - 1)(x + 1)

Detailed Solution

9 - (x2 - 3x - 1)2 = [3 - (x2 - 3x - 1)] [3 + (x2 - 3x - 1)]

= (3 - x2 + 3x + 1)(3 + x2 - 3x - 1)

= (4 + 3x - x2)(x2 - 3x + 2)

= (4 - x)(1 + x)(x - 1)(x - 2)

= -(x - 4)(x + 1) (x - 1)(x - 2)
16.

If 32y + 6(3y) = 27. Find y

A. 3

B. -1

C. 2

D. -3

E. 1

Detailed Solution

32y + 6(3y) = 27

This can be rewritten as (3y)2 + 6(3y) = 27

Let 3y = x

x2 + 6x - 27 = 0

(x + 9)(x - 3) = 0

when x - 3 = 0, x = 3

sub. for x in 3y = x

3y = 3

log33 = y

y = 1
17.

Factorize abx2 + 8y - 4bx - 2axy

A. (ax - 4)(bx - 2y)

B. (ax + b)(x - 8y)

C. (ax - 2y)(bx - 4)

D. (bx - 4)(ax - 2y)

E. (abx - 4)(x - 2y)

Detailed Solution

abx2 + 8y - 4bx - 2axy = (abx2 - 4bx) + (8y - 2axy)

= bx(ax - 4) 2y(ax - 4) 2y(ax - 4)

= (bx - 2y)(ax - 4)
18.

At what real value of x do the curves whose equations are y = x3 + x and y = x2 + 1 intersect?

A. -2

B. 2

C. -1

D. 9

E. 1

Detailed Solution

y = x3 + x and y = x2 + 1
\(\begin{array}{c|c} x & -2 & -1 & 0 & 1 & 2 \\ \hline Y = x^3 + x & -10 & -2 & 0 & 2 & 10 \\ \hline y = x^2 + 1 & 5 & 2 & 1 & 2 & 5\end{array}\)
The curves intersect at x = 1
19.

If the quadratic function 3x2 - 7x + R is a perfect square, find R

A. \(\frac{49}{24}\)

B. \(\frac{49}{12}\)

C. \(\frac{49}{13}\)

D. \(\frac{49}{3}\)

E. \(\frac{49}{36}\)

Detailed Solution

3x2 - 7x + R. Computing the square, we have
x2 - \(\frac{7}{3}\) = -\(\frac{R}{3}\)

(\(\frac{x}{1} - \frac{7}{6}\))2 = -\(\frac{R}{3}\) + \(\frac{49}{36}\)

\(\frac{-R}{3}\) + \(\frac{49}{36}\) = 0

R = \(\frac{49}{36}\) x \(\frac{3}{1}\)

= \(\frac{49}{12}\)
20.

Solve for (x, y) in the equation 2x + y = 4: x^2 + xy = -12

A. (6, -8): (-2, 8)

B. (3, -4): (-1, 4)

C. (8, -4): (-1, 4)

D. (-8, 6): (8, -2)

E. (-4, 3): (4, -1)

Detailed Solution

2x + y = 4......(i)

x^2 + xy = -12........(ii)

from eqn (i), y = 4 - 2x

= x2 + x(4 - 2x)

= -12

x2 + 4x - 2x2 = -12

4x - x2 = -12

x2 - 4x - 12 = 0

(x - 6)(x + 2) = 0

sub. for x = 6, in eqn (i) y = -8, 8

=(6,-8); (-2, 8)