Year : 
1985
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 47 Questions

# Question Ans
21.

Solve the following equation \(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\)

A. (\(\frac{5}{2}\), 1)

B. (5, -4)

C. (2, 1)

D. (1, \(\frac{-5}{2}\))

E. (\(\frac{-5}{2}\), 1)

Detailed Solution

\(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\)

\(\frac{2}{2r - 1}\) - \(\frac{1}{r + 2}\) = \(\frac{5}{3}\)

\(\frac{2r + 4 - 2r + 1}{2r - 1 (r + 2)}\) = \(\frac{5}{3}\)

\(\frac{5}{(2r + 1)(r + 2)}\) = \(\frac{5}{3}\)

5(2r - 1)(r + 2) = 15

(10r - 5)(r + 2) = 15

10r2 + 20r - 5r - 10 = 15

10r2 + 15r = 25

10r2 + 15r - 25 = 0

2r2 + 3r - 5 = 0

(2r2 + 5r)(2r + 5) = r(2r + 5) - 1(2r + 5)

(r
22.

Solve the simultaneous equations 2x - 3y = 10, 10x - 6y = 5

A. x = 2\(\frac{1}{2}\), y = 3\(\frac{1}{2}\)

B. x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)

C. x = 2\(\frac{1}{4}\), y = 3\(\frac{1}{2}\)

D. x = 2\(\frac{1}{3}\), y = 3\(\frac{1}{2}\)

E. x = 2\(\frac{1}{3}\), y = 2\(\frac{1}{2}\)

Detailed Solution

2x - 3y = -10; 10x - 6y = -5

2x - 3y = -10 x 2

10x - 6y = 5

4x - 6y = -20 .......(i)

10x - 6y = 5.......(ii)

eqn(ii) - eqn(1)

6x = 15

x = \(\frac{15}{6}\)

= \(\frac{5}{2}\)

x = 2\(\frac{1}{2}\)

Sub. for x in equ.(ii) 10(\(\frac{5}{2}\)) - 6y = 5

y = 3\(\frac{1}{2}\)
23.

If f(x - 2) = 4x2 + x + 7, find f(1)

A. 12

B. 27

C. 7

D. 46

E. 17

Detailed Solution

f(x - 2) = 4x2 + x + 7

x - 2 = 1, x = 3

f(x - 2) = f(1)

= 4(3)2 + 3 + 7

= 36 + 10

= 46
24.

In \(\bigtriangleup\) XYZ, XY = 13cm, YZ = 9cm, XZ = 11cm and XYZ = \(\theta\). Find cos\(\theta\)o

A. \(\frac{4}{39}\)

B. \(\frac{43}{39}\)

C. \(\frac{209}{3}\)

D. \(\frac{43}{78}\)

Detailed Solution

cos\(\theta\) = \(\frac{13^2 + 9^2 - 11^2}{2(13)(9)}\)

= \(\frac{169 + 81 - 21}{26 \times 9}\)

cos\(\theta\) = \(\frac{129}{26 \times 9}\)

= \(\frac{43}{78}\)
25.

Find the missing value in the table below
\(\begin{array}{c|c} x & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline y = 4 - 3x - x^3 & 80 & & 18 & 8 & 4 & 0 & -10 & -32 \end{array}\)

A. -32

B. -14

C. 40

D. 22

E. 37

Detailed Solution

When x = -3, y = 4 - 3(3) - (-3)3

= 4 + 9 + 27

= 13 + 27

= 40
26.

The number of goals scored by a football team in 20 matches is shown below
\(\begin{array}{c|c} \text{No. of goals} & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \text{No. of matches} & 3 & 5 & 7 & 3 & 1 & 0 \end{array}\)
What are the values of the mean and the mode respectively?

A. (1.75, 5)

B. (1.75, 2)

C. (1.75, 1)

D. (65, 74)

Detailed Solution

\(\begin{array}{c|c}x & f & fx\\ \hline 0 & 3 & 0\\ 1 & 5 & 5\\ 2 & 7 & 14\\ 3 & 4 & 12\\4 & 1 & 4\\5 & 0 & 0\end{array}\)
\(\sum{f}\) = 20

\(\sum fx\) = 35

Mean = \(\frac{\sum fx}{\sum f}\)

= \(\frac{35}{20}\)

= \(\frac{7}{4}\)

= 1.75

Mode = 2

= 1.75, 2
27.

If the hypotenuse of right angled isosceles triangle is 2, what is the length of each of the other sides?

A. \(\sqrt{2}\)

B. \(\frac{1}{2}\)

C. 22

D. 1

E. 2 - 1

Detailed Solution

45o = \(\frac{x}{2}\), Since 45o = \(\frac{1}{\sqrt{2}}\)

x = 2 x \(\frac{1}{\sqrt{2}}\)

= \(\frac{2\sqrt{2}}{2}\)

= \(\sqrt{2}\)
28.

If two fair coins are tossed, what is the probability of getting at least one head?

A. \(\frac{1}{4}\)

B. \(\frac{1}{2}\)

C. 1

D. \(\frac{43}{78}\)

E. \(\frac{3}{4}\)

Detailed Solution

Prob. of getting at least one head

Prob. of getting one head + prob. of getting 2 heads

= \(\frac{1}{4}\) + \(\frac{2}{4}\)

= \(\frac{3}{4}\)
29.

The ratio of the length of two similar rectangular blocks is 2 : 3. If the volume of the larger block is 351cm\(^3\), then the volume of the other block is?

A. 234.00 cm3

B. 526.50 cm3

C. 166.00 cm3

D. 687cm3

Detailed Solution

Let x represent total vol. 2 : 3 = 2 + 3 = 5

\(\frac{3}{5}\)x = 351

x = \(\frac{351 \times 5}{3}\)

= 585

Volume of smaller block = \(\frac{2}{5}\) x 585

= 234.00cm\(^3\)
30.

The bearing of a bird on a tree from a hunter on the ground is N72oE. What is the bearing of the hunter from the birds?

A. S 18o W

B. S 72o W

C. S 72o E

D. S 27o E

E. S 27o W

Detailed Solution

B = Bird ; H = Hunter.
Bearing of the hunter from the bird = S 72° W.
21.

Solve the following equation \(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\)

A. (\(\frac{5}{2}\), 1)

B. (5, -4)

C. (2, 1)

D. (1, \(\frac{-5}{2}\))

E. (\(\frac{-5}{2}\), 1)

Detailed Solution

\(\frac{2}{2r - 1}\) - \(\frac{5}{3}\) = \(\frac{1}{r + 2}\)

\(\frac{2}{2r - 1}\) - \(\frac{1}{r + 2}\) = \(\frac{5}{3}\)

\(\frac{2r + 4 - 2r + 1}{2r - 1 (r + 2)}\) = \(\frac{5}{3}\)

\(\frac{5}{(2r + 1)(r + 2)}\) = \(\frac{5}{3}\)

5(2r - 1)(r + 2) = 15

(10r - 5)(r + 2) = 15

10r2 + 20r - 5r - 10 = 15

10r2 + 15r = 25

10r2 + 15r - 25 = 0

2r2 + 3r - 5 = 0

(2r2 + 5r)(2r + 5) = r(2r + 5) - 1(2r + 5)

(r
22.

Solve the simultaneous equations 2x - 3y = 10, 10x - 6y = 5

A. x = 2\(\frac{1}{2}\), y = 3\(\frac{1}{2}\)

B. x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)

C. x = 2\(\frac{1}{4}\), y = 3\(\frac{1}{2}\)

D. x = 2\(\frac{1}{3}\), y = 3\(\frac{1}{2}\)

E. x = 2\(\frac{1}{3}\), y = 2\(\frac{1}{2}\)

Detailed Solution

2x - 3y = -10; 10x - 6y = -5

2x - 3y = -10 x 2

10x - 6y = 5

4x - 6y = -20 .......(i)

10x - 6y = 5.......(ii)

eqn(ii) - eqn(1)

6x = 15

x = \(\frac{15}{6}\)

= \(\frac{5}{2}\)

x = 2\(\frac{1}{2}\)

Sub. for x in equ.(ii) 10(\(\frac{5}{2}\)) - 6y = 5

y = 3\(\frac{1}{2}\)
23.

If f(x - 2) = 4x2 + x + 7, find f(1)

A. 12

B. 27

C. 7

D. 46

E. 17

Detailed Solution

f(x - 2) = 4x2 + x + 7

x - 2 = 1, x = 3

f(x - 2) = f(1)

= 4(3)2 + 3 + 7

= 36 + 10

= 46
24.

In \(\bigtriangleup\) XYZ, XY = 13cm, YZ = 9cm, XZ = 11cm and XYZ = \(\theta\). Find cos\(\theta\)o

A. \(\frac{4}{39}\)

B. \(\frac{43}{39}\)

C. \(\frac{209}{3}\)

D. \(\frac{43}{78}\)

Detailed Solution

cos\(\theta\) = \(\frac{13^2 + 9^2 - 11^2}{2(13)(9)}\)

= \(\frac{169 + 81 - 21}{26 \times 9}\)

cos\(\theta\) = \(\frac{129}{26 \times 9}\)

= \(\frac{43}{78}\)
25.

Find the missing value in the table below
\(\begin{array}{c|c} x & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline y = 4 - 3x - x^3 & 80 & & 18 & 8 & 4 & 0 & -10 & -32 \end{array}\)

A. -32

B. -14

C. 40

D. 22

E. 37

Detailed Solution

When x = -3, y = 4 - 3(3) - (-3)3

= 4 + 9 + 27

= 13 + 27

= 40
26.

The number of goals scored by a football team in 20 matches is shown below
\(\begin{array}{c|c} \text{No. of goals} & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \text{No. of matches} & 3 & 5 & 7 & 3 & 1 & 0 \end{array}\)
What are the values of the mean and the mode respectively?

A. (1.75, 5)

B. (1.75, 2)

C. (1.75, 1)

D. (65, 74)

Detailed Solution

\(\begin{array}{c|c}x & f & fx\\ \hline 0 & 3 & 0\\ 1 & 5 & 5\\ 2 & 7 & 14\\ 3 & 4 & 12\\4 & 1 & 4\\5 & 0 & 0\end{array}\)
\(\sum{f}\) = 20

\(\sum fx\) = 35

Mean = \(\frac{\sum fx}{\sum f}\)

= \(\frac{35}{20}\)

= \(\frac{7}{4}\)

= 1.75

Mode = 2

= 1.75, 2
27.

If the hypotenuse of right angled isosceles triangle is 2, what is the length of each of the other sides?

A. \(\sqrt{2}\)

B. \(\frac{1}{2}\)

C. 22

D. 1

E. 2 - 1

Detailed Solution

45o = \(\frac{x}{2}\), Since 45o = \(\frac{1}{\sqrt{2}}\)

x = 2 x \(\frac{1}{\sqrt{2}}\)

= \(\frac{2\sqrt{2}}{2}\)

= \(\sqrt{2}\)
28.

If two fair coins are tossed, what is the probability of getting at least one head?

A. \(\frac{1}{4}\)

B. \(\frac{1}{2}\)

C. 1

D. \(\frac{43}{78}\)

E. \(\frac{3}{4}\)

Detailed Solution

Prob. of getting at least one head

Prob. of getting one head + prob. of getting 2 heads

= \(\frac{1}{4}\) + \(\frac{2}{4}\)

= \(\frac{3}{4}\)
29.

The ratio of the length of two similar rectangular blocks is 2 : 3. If the volume of the larger block is 351cm\(^3\), then the volume of the other block is?

A. 234.00 cm3

B. 526.50 cm3

C. 166.00 cm3

D. 687cm3

Detailed Solution

Let x represent total vol. 2 : 3 = 2 + 3 = 5

\(\frac{3}{5}\)x = 351

x = \(\frac{351 \times 5}{3}\)

= 585

Volume of smaller block = \(\frac{2}{5}\) x 585

= 234.00cm\(^3\)
30.

The bearing of a bird on a tree from a hunter on the ground is N72oE. What is the bearing of the hunter from the birds?

A. S 18o W

B. S 72o W

C. S 72o E

D. S 27o E

E. S 27o W

Detailed Solution

B = Bird ; H = Hunter.
Bearing of the hunter from the bird = S 72° W.