Year : 
1993
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 51 Questions

# Question Ans
11.

Make x the subject of the relation \(\frac{1 + ax}{1 - ax}\) = \(\frac{p}{q}\)

A. \(\frac{p + q}{a(p - q)}\)

B. \(\frac{p - q}{a(p + q)}\)

C. \(\frac{p - q}{apq}\)

D. \(\frac{pq}{a(p - q)}\)

Detailed Solution

\(\frac{1 + ax}{1 - ax}\) = \(\frac{p}{q}\) by cross multiplication,

q(1 + ax) = p(1 - ax)

q + qax = p - pax

qax + pax = p - q

∴ x = \(\frac{p - q}{a(p + q)}\)
12.

Which of the following is a factor of 15 + 7x - 2x2

A. x + 3

B. x - 3

C. x - 5

D. x + 5

Detailed Solution

Factorize 15 + 7x - 2x2

(5 - x)(3 + 2x); suppose 15 + 7x = 2x2 = 0

∴ (5 - x)(3 + 2x) = 0

x = 5 or x = -\(\frac{3}{2}\)

Since 5 is a root, then (x - 5) is a factor
13.

Evaluate (x + \(\frac{1}{x}\) + 1)2 - (x + \(\frac{1}{x}\) + 1)2

A. 4x2

B. (\(\frac{2}{x}\) + 2)2

C. 4

D. 4(1 + x)

Detailed Solution

(x + \(\frac{1}{x}\) + 1)2 - (x + \(\frac{1}{x}\) + 1)2

= (x + \(\frac{1}{x}\) + 1 + x + \(\frac{-1}{x}\) - 1)(x - \(\frac{1}{x}\) + 1 - x + \(\frac{1}{x}\) + 1)

= (2x) (2 + \(\frac{2}{x}\)) = 2x x 2(1 + \(\frac{1}{x}\))

4x (1 + \(\frac{1}{x}\)) = 4x + 4

= 4(1 + x)
14.

Solve the following simultaneous equation for x. x2 + y - 5 = 0, y - 7x + 3 = 0

A. -2, 4

B. 2, 4

C. -1,8

D. 1, -8

Detailed Solution

x2 + y - 5 = 0.....(i)

y - 7x + 3 = 0.........(ii)

y = 7x - 3, substituting the value of y in equation (i)

x2 + (7x - 3) - 5 = 0

x2 + 7x + 3 = 0

(x + 8)(x - 1) = 0

x = -8 or 1
15.

Solve the following equation (3x - 2)(5x - 4) = (3x - 2)2

A. \(\frac{-2}{3}\), 1

B. 1

C. \(\frac{2}{3}\), 1

D. \(\frac{2}{3}\), \(\frac{4}{5}\)

Detailed Solution

(3x - 2)(5x - 4) = (3x - 2)2 = 5x2 - 22x + 6

= 9x2 = 12x + 4

6x2 - 10x + 4 = 0

6x2 - 6x - 4x + 4 = 0

6x(x - 1) -4(x - 1) = (6x - 4)(x -1) = 0

x = 1 or \(\frac{2}{3}\)
16.

If the function f is defined by f(x + 2) = 2x\(^2\) + 7x - 5, find f(-1)

A. -10

B. -8

C. 4

D. 10

Detailed Solution

f(x + 2) = f(-1)
f(-1) is gotten when x = -3.
\(2x^{2} + 7x - 5\) at x = -3.
f(-1) = \(2(-3)^{2} + 7(-3) - 5\)
= \(18 - 21 - 5 = -8\)
17.

Divide the expression x3 + 7x2 - x - 7 by -1 + x2

A. -x3 + 7x2 - x - 7

B. -x3 = 7x + 7

C. x - 7

D. x + 7

D

18.

Simplify \(\frac{1}{p}\) - \(\frac{1}{q}\) \(\div\) \(\frac{p}{q}\) - \(\frac{q}{p}\)

A. \(\frac{1}{p - q}\)

B. \(\frac{-1}{p + q}\)

C. \(\frac{1}{pq}\)

D. \(\frac{1}{pq(p - q)}\)

Detailed Solution

\(\frac{1}{p}\) - \(\frac{1}{q}\) \(\div\) \(\frac{p}{q}\) - \(\frac{q}{p}\) = \(\frac{q - p}{pq}\) ÷ \(\frac{p^2 - q^2}{pq}\)

\(\frac{q - p}{pq}\) x \(\frac{pq}{p^2q^2}\) = \(\frac{q - p}{p^2 - q^2}\)

\(\frac{-(p - q)}{(p + q)(p - q)}\)

= \(\frac{-1}{p + q}\)
19.

Solve the inequality y2 - 3y > 18

A. -3 < y < 6

B. y < -3 or y > 6

C. y > -3 or y > 6

D. y < 3 or y < 6

Detailed Solution

y2 - 3y > 18 = 3y - 18 > 0

y2 - 6y + 3y - 18 > 0 = y(y - 6) + 3 (y - 6) > 0

= (y + 3) (y - 6) > 0

Case 1 (+, +) \(\to\) (y + 3) > 0, (y - 6) > 0

= y > -3 y > 6

Case 2 (-, -) \(\to\) (y + 3) < 0, (y - 6) < 0

= y < -3, y < 6

Combining solution in case 1 and Case 2

= x < -3y < 6

= -3 < y < 6
20.

If x is negative, what is the range of values of x within which \(\frac{x + 1}{3}\) > \(\frac{1}{X + 3}\)

A. 3 < x < 4

B. -4 < x < -3

C. -2 < x < -1

D. -3 < x < 0

Detailed Solution

\(\frac{x + 1}{3}\) > \(\frac{1}{X + 3}\) = \(\frac{x + 1}{3}\) > \(\frac{x + 3}{X + 3}\)

= (x + 1)(x + 3)2 > 3(x + 3) = (x + 1)[x2 + 6x + 9] > 3(x + 3)

x3 + 7x2 + 15x + 9 > 3x + 9 = x3 + 7x2 + 12x > 0

= x(x + 3)9x + 4) > 0

Case 1 (+, +, +) = x > 0 , x + 3 > 0, x + 4 > 0

= x > -4 (solution only)

Case 2 (+, -, -) = x > 0, x + 4 < 0

= x > 0, x < -3, x < -4 = x < -3(solution only)

Case 3 (
11.

Make x the subject of the relation \(\frac{1 + ax}{1 - ax}\) = \(\frac{p}{q}\)

A. \(\frac{p + q}{a(p - q)}\)

B. \(\frac{p - q}{a(p + q)}\)

C. \(\frac{p - q}{apq}\)

D. \(\frac{pq}{a(p - q)}\)

Detailed Solution

\(\frac{1 + ax}{1 - ax}\) = \(\frac{p}{q}\) by cross multiplication,

q(1 + ax) = p(1 - ax)

q + qax = p - pax

qax + pax = p - q

∴ x = \(\frac{p - q}{a(p + q)}\)
12.

Which of the following is a factor of 15 + 7x - 2x2

A. x + 3

B. x - 3

C. x - 5

D. x + 5

Detailed Solution

Factorize 15 + 7x - 2x2

(5 - x)(3 + 2x); suppose 15 + 7x = 2x2 = 0

∴ (5 - x)(3 + 2x) = 0

x = 5 or x = -\(\frac{3}{2}\)

Since 5 is a root, then (x - 5) is a factor
13.

Evaluate (x + \(\frac{1}{x}\) + 1)2 - (x + \(\frac{1}{x}\) + 1)2

A. 4x2

B. (\(\frac{2}{x}\) + 2)2

C. 4

D. 4(1 + x)

Detailed Solution

(x + \(\frac{1}{x}\) + 1)2 - (x + \(\frac{1}{x}\) + 1)2

= (x + \(\frac{1}{x}\) + 1 + x + \(\frac{-1}{x}\) - 1)(x - \(\frac{1}{x}\) + 1 - x + \(\frac{1}{x}\) + 1)

= (2x) (2 + \(\frac{2}{x}\)) = 2x x 2(1 + \(\frac{1}{x}\))

4x (1 + \(\frac{1}{x}\)) = 4x + 4

= 4(1 + x)
14.

Solve the following simultaneous equation for x. x2 + y - 5 = 0, y - 7x + 3 = 0

A. -2, 4

B. 2, 4

C. -1,8

D. 1, -8

Detailed Solution

x2 + y - 5 = 0.....(i)

y - 7x + 3 = 0.........(ii)

y = 7x - 3, substituting the value of y in equation (i)

x2 + (7x - 3) - 5 = 0

x2 + 7x + 3 = 0

(x + 8)(x - 1) = 0

x = -8 or 1
15.

Solve the following equation (3x - 2)(5x - 4) = (3x - 2)2

A. \(\frac{-2}{3}\), 1

B. 1

C. \(\frac{2}{3}\), 1

D. \(\frac{2}{3}\), \(\frac{4}{5}\)

Detailed Solution

(3x - 2)(5x - 4) = (3x - 2)2 = 5x2 - 22x + 6

= 9x2 = 12x + 4

6x2 - 10x + 4 = 0

6x2 - 6x - 4x + 4 = 0

6x(x - 1) -4(x - 1) = (6x - 4)(x -1) = 0

x = 1 or \(\frac{2}{3}\)
16.

If the function f is defined by f(x + 2) = 2x\(^2\) + 7x - 5, find f(-1)

A. -10

B. -8

C. 4

D. 10

Detailed Solution

f(x + 2) = f(-1)
f(-1) is gotten when x = -3.
\(2x^{2} + 7x - 5\) at x = -3.
f(-1) = \(2(-3)^{2} + 7(-3) - 5\)
= \(18 - 21 - 5 = -8\)
17.

Divide the expression x3 + 7x2 - x - 7 by -1 + x2

A. -x3 + 7x2 - x - 7

B. -x3 = 7x + 7

C. x - 7

D. x + 7

D

18.

Simplify \(\frac{1}{p}\) - \(\frac{1}{q}\) \(\div\) \(\frac{p}{q}\) - \(\frac{q}{p}\)

A. \(\frac{1}{p - q}\)

B. \(\frac{-1}{p + q}\)

C. \(\frac{1}{pq}\)

D. \(\frac{1}{pq(p - q)}\)

Detailed Solution

\(\frac{1}{p}\) - \(\frac{1}{q}\) \(\div\) \(\frac{p}{q}\) - \(\frac{q}{p}\) = \(\frac{q - p}{pq}\) ÷ \(\frac{p^2 - q^2}{pq}\)

\(\frac{q - p}{pq}\) x \(\frac{pq}{p^2q^2}\) = \(\frac{q - p}{p^2 - q^2}\)

\(\frac{-(p - q)}{(p + q)(p - q)}\)

= \(\frac{-1}{p + q}\)
19.

Solve the inequality y2 - 3y > 18

A. -3 < y < 6

B. y < -3 or y > 6

C. y > -3 or y > 6

D. y < 3 or y < 6

Detailed Solution

y2 - 3y > 18 = 3y - 18 > 0

y2 - 6y + 3y - 18 > 0 = y(y - 6) + 3 (y - 6) > 0

= (y + 3) (y - 6) > 0

Case 1 (+, +) \(\to\) (y + 3) > 0, (y - 6) > 0

= y > -3 y > 6

Case 2 (-, -) \(\to\) (y + 3) < 0, (y - 6) < 0

= y < -3, y < 6

Combining solution in case 1 and Case 2

= x < -3y < 6

= -3 < y < 6
20.

If x is negative, what is the range of values of x within which \(\frac{x + 1}{3}\) > \(\frac{1}{X + 3}\)

A. 3 < x < 4

B. -4 < x < -3

C. -2 < x < -1

D. -3 < x < 0

Detailed Solution

\(\frac{x + 1}{3}\) > \(\frac{1}{X + 3}\) = \(\frac{x + 1}{3}\) > \(\frac{x + 3}{X + 3}\)

= (x + 1)(x + 3)2 > 3(x + 3) = (x + 1)[x2 + 6x + 9] > 3(x + 3)

x3 + 7x2 + 15x + 9 > 3x + 9 = x3 + 7x2 + 12x > 0

= x(x + 3)9x + 4) > 0

Case 1 (+, +, +) = x > 0 , x + 3 > 0, x + 4 > 0

= x > -4 (solution only)

Case 2 (+, -, -) = x > 0, x + 4 < 0

= x > 0, x < -3, x < -4 = x < -3(solution only)

Case 3 (