21 - 30 of 48 Questions
# | Question | Ans |
---|---|---|
21. |
Find the values of x for which the expression \(\frac{(x - 3)(x - 2)}{x^2 + x - 2}\) A. 1, -2 B. -1, 2 C. 2, 3 D. -2 E. -2, -3 Detailed Solutionto find the values of x for which the expression is underlined, let x2 + x - 2 = 0By factorizing, we have (x + 2)(x - 1) = 0 when x + 2 = 0, when x - 1 = 0, x = -2 or x = 1 The two values are -2 and 1 |
|
22. |
A stone Q is tied to a point P vertically above Q by an inelastic string of length 2 meters. How high does the stone rise when the string is inclined at an angle 60o to the vertical? A. It does not rise B. 2\(\sqrt{3}\) meters C. 3 meters D. 1 meters E. 3 Detailed SolutionCos 60o = \(\frac{PD}{2}\)Cos 60o x 2 = 0.5 x 2 = 1m |
|
23. |
Express 130 kilometers per second in meters per hour A. 7.8 x 10-5 B. 4.68 x 106 C. 7,800,000 D. 4.68 x 108 E. 7.80 x 105 Detailed Solution1km = 1000m60sec. = 1 mins 60 mins. = 1 hr 130000m per sec = 130000 x 3600 = 468000000m/hr = 468 x 108 m/hr |
|
24. |
The quantity y is partly constant and partly varies inversely as the square of x. With P and Q as constants, a possible relationship between x and y is A. y = Q + \(\frac{P}{x^2}\) B. y = Q + px C. y = \(\frac{PQ}{x^2}\) D. y = Q - \(\frac{P}{x^2}\) Detailed SolutionGiven the above statement,\(y = Q + \frac{P}{x^{2}}\) |
|
25. |
If \(\frac{3e + f}{3f - e}\) = \(\frac{2}{5}\), find the value of \(\frac{e + 3f}{f - 3e}\) A. \(\frac{5}{2}\) B. 1 C. \(\frac{26}{7}\) D. \(\frac{1}{3}\) Detailed Solution\(\frac{3e + f}{3f - e}\) = \(\frac{2}{5}\)= 3e + f = 2 x 1 \(\frac{-e + 3f}{3e - f}\) = \(\frac{5 \times 3}{2}\) = \(\frac{3e + 9f = 15}{10f = 17}\) f = \(\frac{17}{10}\) Sub. for equ. (1) 3e + \(\frac{17}{10}\) = 2 3e = 2 - \(\frac{17}{10}\) \(\frac{3}{10}\) e = \(\frac{3}{10}\) x \(\frac{1}{3}\) = \(\frac{1}{10}\) = e + 3f = \(\frac{1}{10}\) + \(\frac{3 \times}{10}\) = \(\frac{52}{10}\) f - 3e = \(\frac{17}{10}\) - 3 x \(\frac{1}{10}\) = \(\frac |
|
26. |
A world congress of mathematicians were held in Nice in 1970 with 800 people participating. There were 300 from Europe, 200 from America, 150 from Asia, 45 from Africa and 105 from Australia. Representing the above on a pie chart, the angle of the sector representing the participants from Asia is? A. 150o B. 67\(\frac{1}{2}\)o C. 67o D. 135o E. 68o Detailed SolutionRepresenting from Asia is 150\(\frac{150}{800}\) x 360 = \(\frac{135}{2}\) = 67\(\frac{1}{2}\)o |
|
27. |
The diameter of a metal rod is measured as 23.40 cm to four significant figures. What is the maximum error in the measurement? A. 0.05cm B. 0.5cm C. 0.045cm D. 0.005cm E. 0.004cm Detailed SolutionMaximum error in measurement to 2 decimal placesMaximum error = \(\frac{1}{2}\) x 0.001 = 0.005 |
|
28. |
In a regular polygon of n sides, each interior angle is 144o. Find n A. 12 B. 11 C. 10 D. 8 E. 6F Detailed SolutionFormula for an interior angle of a polygon is (2n - 4) x 90(2n - 4) x 90 = 144n 190n - 360 = 144n n = \(\frac{360}{36}\) = 10 |
|
29. |
Simplify \(\frac{3}{2x - 1}\) + \(\frac{2 - x}{x - 2}\) A. \(\frac{2 - x}{(2x - 1)(x - 2)}\) B. \(\frac{5 - x}{(2x - 1)(x - 2)}\) C. \(\frac{4 - 2x}{2x - 1}\) D. \(\frac{6 - 3x}{(2x - 1)(x - 2)}\) Detailed Solution\(\frac{3}{2x - 1}\) + \(\frac{2 - x}{x - 2}\)= \(\frac{3}{2x - 1}\) - \(\frac{x - 2}{x - 2}\) = \(\frac{3}{2x - 1}\) - 1 = \(\frac{3 - (2x - 1)}{2x - 1}\) = \(\frac{3 - 2x + 1}{2x - 1}\) = \(\frac{4 - 2x}{2x - 1}\) |
|
30. |
The solution to the quadratic equation 5 + 3x - 2x2 = 0 is A. (\(\frac{5}{2}\), 1) B. (5, 3) C. -(\(\frac{5}{2}\), -1) D. (\(\frac{5}{2}\), -1) Detailed Solution5 + 3x - 2x2 = 0, (x + 1)(5 - 2x) (expand to check)(x + 1)(5 - 2x) = 0 when x = 1 = 0, x = -1 when 5 - 2x = 0, x = \(\frac{5}{2}\) - 1 |
21. |
Find the values of x for which the expression \(\frac{(x - 3)(x - 2)}{x^2 + x - 2}\) A. 1, -2 B. -1, 2 C. 2, 3 D. -2 E. -2, -3 Detailed Solutionto find the values of x for which the expression is underlined, let x2 + x - 2 = 0By factorizing, we have (x + 2)(x - 1) = 0 when x + 2 = 0, when x - 1 = 0, x = -2 or x = 1 The two values are -2 and 1 |
|
22. |
A stone Q is tied to a point P vertically above Q by an inelastic string of length 2 meters. How high does the stone rise when the string is inclined at an angle 60o to the vertical? A. It does not rise B. 2\(\sqrt{3}\) meters C. 3 meters D. 1 meters E. 3 Detailed SolutionCos 60o = \(\frac{PD}{2}\)Cos 60o x 2 = 0.5 x 2 = 1m |
|
23. |
Express 130 kilometers per second in meters per hour A. 7.8 x 10-5 B. 4.68 x 106 C. 7,800,000 D. 4.68 x 108 E. 7.80 x 105 Detailed Solution1km = 1000m60sec. = 1 mins 60 mins. = 1 hr 130000m per sec = 130000 x 3600 = 468000000m/hr = 468 x 108 m/hr |
|
24. |
The quantity y is partly constant and partly varies inversely as the square of x. With P and Q as constants, a possible relationship between x and y is A. y = Q + \(\frac{P}{x^2}\) B. y = Q + px C. y = \(\frac{PQ}{x^2}\) D. y = Q - \(\frac{P}{x^2}\) Detailed SolutionGiven the above statement,\(y = Q + \frac{P}{x^{2}}\) |
|
25. |
If \(\frac{3e + f}{3f - e}\) = \(\frac{2}{5}\), find the value of \(\frac{e + 3f}{f - 3e}\) A. \(\frac{5}{2}\) B. 1 C. \(\frac{26}{7}\) D. \(\frac{1}{3}\) Detailed Solution\(\frac{3e + f}{3f - e}\) = \(\frac{2}{5}\)= 3e + f = 2 x 1 \(\frac{-e + 3f}{3e - f}\) = \(\frac{5 \times 3}{2}\) = \(\frac{3e + 9f = 15}{10f = 17}\) f = \(\frac{17}{10}\) Sub. for equ. (1) 3e + \(\frac{17}{10}\) = 2 3e = 2 - \(\frac{17}{10}\) \(\frac{3}{10}\) e = \(\frac{3}{10}\) x \(\frac{1}{3}\) = \(\frac{1}{10}\) = e + 3f = \(\frac{1}{10}\) + \(\frac{3 \times}{10}\) = \(\frac{52}{10}\) f - 3e = \(\frac{17}{10}\) - 3 x \(\frac{1}{10}\) = \(\frac |
26. |
A world congress of mathematicians were held in Nice in 1970 with 800 people participating. There were 300 from Europe, 200 from America, 150 from Asia, 45 from Africa and 105 from Australia. Representing the above on a pie chart, the angle of the sector representing the participants from Asia is? A. 150o B. 67\(\frac{1}{2}\)o C. 67o D. 135o E. 68o Detailed SolutionRepresenting from Asia is 150\(\frac{150}{800}\) x 360 = \(\frac{135}{2}\) = 67\(\frac{1}{2}\)o |
|
27. |
The diameter of a metal rod is measured as 23.40 cm to four significant figures. What is the maximum error in the measurement? A. 0.05cm B. 0.5cm C. 0.045cm D. 0.005cm E. 0.004cm Detailed SolutionMaximum error in measurement to 2 decimal placesMaximum error = \(\frac{1}{2}\) x 0.001 = 0.005 |
|
28. |
In a regular polygon of n sides, each interior angle is 144o. Find n A. 12 B. 11 C. 10 D. 8 E. 6F Detailed SolutionFormula for an interior angle of a polygon is (2n - 4) x 90(2n - 4) x 90 = 144n 190n - 360 = 144n n = \(\frac{360}{36}\) = 10 |
|
29. |
Simplify \(\frac{3}{2x - 1}\) + \(\frac{2 - x}{x - 2}\) A. \(\frac{2 - x}{(2x - 1)(x - 2)}\) B. \(\frac{5 - x}{(2x - 1)(x - 2)}\) C. \(\frac{4 - 2x}{2x - 1}\) D. \(\frac{6 - 3x}{(2x - 1)(x - 2)}\) Detailed Solution\(\frac{3}{2x - 1}\) + \(\frac{2 - x}{x - 2}\)= \(\frac{3}{2x - 1}\) - \(\frac{x - 2}{x - 2}\) = \(\frac{3}{2x - 1}\) - 1 = \(\frac{3 - (2x - 1)}{2x - 1}\) = \(\frac{3 - 2x + 1}{2x - 1}\) = \(\frac{4 - 2x}{2x - 1}\) |
|
30. |
The solution to the quadratic equation 5 + 3x - 2x2 = 0 is A. (\(\frac{5}{2}\), 1) B. (5, 3) C. -(\(\frac{5}{2}\), -1) D. (\(\frac{5}{2}\), -1) Detailed Solution5 + 3x - 2x2 = 0, (x + 1)(5 - 2x) (expand to check)(x + 1)(5 - 2x) = 0 when x = 1 = 0, x = -1 when 5 - 2x = 0, x = \(\frac{5}{2}\) - 1 |