Year : 
1982
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 48 Questions

# Question Ans
11.

What is the least possible value of \(\frac{9}{1 + 2x^2}\) if 0 \(\geq\) x \(\geq\) 2?

A. 9

B. 5

C. 1

D. 2

Detailed Solution

0 \(\geq\) x \(\geq\) 2 \(\to\) 0, 1, 2

If x = 0, \(\frac{9}{1 + 2x^2}\)

\(\frac{9}{1 + 2(0)^2}\) = \(\frac{9}{1}\)

= 3

If x = 2, \(\frac{9}{1 + 2(1)^2}\)

= \(\frac{9}{3}\)

= 3

If x = 2, \(\frac{9}{1 + 2(2)^2}\)

= \(\frac{9}{9}\)

= 1

The least value of \(\frac{9}{1 + 2x^2}\) is 1 when x = 2
12.

A man bought wrist watch for N150 but was only able to sell it for N120. Find the loss per cent on the transaction

A. 25%

B. 11%

C. 20%

D. 80%

E. 30%

Detailed Solution

Loss% = \(\frac{\text{actual loss}}{\text{cost price}}\) x 100%
\(\frac{N150 - N120}{N150} \times 100%\)
\(\frac{N30}{N150} \times 100%\)
= 20%
13.

Find the median of the set set of numbers 110, 116, 113, 119, 118, 127, 118, 117, 113

A. 117.5

B. 118

C. 117

D. 116

E. 113

Detailed Solution

Re-arrange in ascending order: 110, 113, 113, 116, |117|, 118, 119, 127

a= 117
14.

If f(x - 2) = 3x2 + 4x + 1. Find the area of the sector

A. 8

B. 40

C. 7

D. 24

E. 32

Detailed Solution

f(x - 2) = 3x2 + 4x + 1

f(1) will be f(3 - 2)

When x = 3, f(1) = 3(3)2 + 4 x 3 = 1

27 + 12 +1 = 40
15.

A sector of a circle is bounded by two radii 7cm long and an arc length 6cm. Find the area of the sector.

A. 42cm2

B. 3cm2

C. 21cm2

D. 24cm2

E. 12cm2

Detailed Solution

Length of arc = \(\frac{\theta}{360}\) x 2\(\pi\)r = 6

\(\theta\) x 2\(\pi\)r = 360 x 6

\(\theta\) = \(\frac{360 \times 6}{2\pi r}\)

Area of the sector = \(\frac{\theta}{360}\) x \(\pi\)r2

\(\frac{360 \times 6}{2\pi r}\) x \(\frac{1}{360}\) x \(\pi\)r2 = r

= 3 x 7

= 21cm2
16.

Given that p:q = \(\frac{1}{3}\):\(\frac{1}{2}\) and q:r = \(\frac{2}{5}\), find p:r

A. 4:105

B. 7:15

C. 20:21

D. 2:35

E. 3:20

Detailed Solution

\(p : q = \frac{1}{3} : \frac{1}{2}\)
\(\frac{p}{q} = \frac{2}{3}\)
\(2q = 3p ... (1)\)
\(q : r = \frac{2}{5} : \frac{4}{7}\)
\(\frac{q}{r} = \frac{2}{5} \times \frac{7}{4} = \frac{7}{10}\)
\(10q = 7r ... (2)\)
Eliminating q, we have
(1) : \(2q = 3p \)
\(10q = 15p\)
\(\implies 15p = 7r\)
\(\therefore \frac{p}{r} = \frac{7}{15}\)
\(p : r = 7 : 15\)
17.

If sin \(\theta\) = \(\frac{m - n}{m + n}\); Find the value of 1 + tan2\(\theta\)

A. \(\frac{(m^2 + n^2)}{m + n}\)

B. \(\frac{(m^2 + n^2 + 2mn)}{4mn}\)

C. \(\frac{2(m^2 + n^2 + mn)}{m + n}\)

D. \(\frac{(m^2 + n^2 + mn)}{m + n}\)

Detailed Solution

\((m + n)^{2} = (m - n)^{2} + x^{2}\)
\(m^{2} + 2mn + n^{2} = m^{2} - 2mn + n^{2} + x^{2}\)
\(x^{2} = 4mn\)
\(x = \sqrt{4mn} = 2\sqrt{mn}\)
1 + tan2\(\theta\) = sec2\(\theta\)

= \(\frac{1}{cos^2\theta}\)

\(\cos \theta = \frac{2\sqrt{mn}}{(m + n)}\)
\(\frac{1}{\cos \theta} = \frac{(m + n)}{2\sqrt{mn}}\)
\(\sec^{2} \theta = \frac{(m + n)^{2}}{4mn}\)
= \(\frac{(m^2 + n^2 + 2mn)}{4mn}\)
18.

The currency used in a country is called 'Matimalik'(M) and is of base seven. A lady in that country bought 4 bags of rice at M56 per bag and and 3 tins of milk at M4 per tin. What is the total cost of the item she bought?

A. M2467

B. M2427

C. M2367

D. M3417

E. M3387

Detailed Solution

4 bags of rice - M 56 each
3 tins of milk - M 4 each
\(M 56 \times 4 = M 323\)
\(M 4 \times 3 = M 15\)
\(M (323 + 15) = M 341\)

19.

Solve for x, If \(\frac{\frac{2}{x}}{\frac{p^2 + p^2}{p^2 + p^2}}\) = m

A. \(\frac{4pq}{m(p + q)}\)

B. \(\frac{2p^2q^2}{m(q^2 + p^2)}\)

C. \(\frac{2pq}{m(q^2 + p^2)}\)

D. \(\frac{2p^2q^2}{m(p^2)}\)

Detailed Solution

\(\frac{1}{p^2}\) + \(\frac{1}{q^2}\) = \(\frac{q^2 + p^2}{p^2 + q^2}\)

\(\frac{\frac{2}{x}}{\frac{p^2 + p^2}{p^2 + p^2}}\)

m = \(\frac{2p^2q^2}{x(p^2 + q^2)}\)

= m2p2q2 = m x (p2 + q2)

x = \(\frac{2p^2q^2}{m(q^2 + p^2)}\)
20.

Express 37.05 x 0.0042 in standard form

A. 15.561 x 102

B. 1.5561 x 10-4

C. 1.556 x 10-1

D. 1.5561 x 101

E. 1.55 x 101

Detailed Solution

37.05 x 0.0042 in standard form

\(\begin{array}{c|c}No. & log \\\hline 37.05 & 1.5688\\ 0.0042 & 3.6232 \\ \hline & 1.1920\end{array}\)

= 0.1556

= 1.556 x 10-1
11.

What is the least possible value of \(\frac{9}{1 + 2x^2}\) if 0 \(\geq\) x \(\geq\) 2?

A. 9

B. 5

C. 1

D. 2

Detailed Solution

0 \(\geq\) x \(\geq\) 2 \(\to\) 0, 1, 2

If x = 0, \(\frac{9}{1 + 2x^2}\)

\(\frac{9}{1 + 2(0)^2}\) = \(\frac{9}{1}\)

= 3

If x = 2, \(\frac{9}{1 + 2(1)^2}\)

= \(\frac{9}{3}\)

= 3

If x = 2, \(\frac{9}{1 + 2(2)^2}\)

= \(\frac{9}{9}\)

= 1

The least value of \(\frac{9}{1 + 2x^2}\) is 1 when x = 2
12.

A man bought wrist watch for N150 but was only able to sell it for N120. Find the loss per cent on the transaction

A. 25%

B. 11%

C. 20%

D. 80%

E. 30%

Detailed Solution

Loss% = \(\frac{\text{actual loss}}{\text{cost price}}\) x 100%
\(\frac{N150 - N120}{N150} \times 100%\)
\(\frac{N30}{N150} \times 100%\)
= 20%
13.

Find the median of the set set of numbers 110, 116, 113, 119, 118, 127, 118, 117, 113

A. 117.5

B. 118

C. 117

D. 116

E. 113

Detailed Solution

Re-arrange in ascending order: 110, 113, 113, 116, |117|, 118, 119, 127

a= 117
14.

If f(x - 2) = 3x2 + 4x + 1. Find the area of the sector

A. 8

B. 40

C. 7

D. 24

E. 32

Detailed Solution

f(x - 2) = 3x2 + 4x + 1

f(1) will be f(3 - 2)

When x = 3, f(1) = 3(3)2 + 4 x 3 = 1

27 + 12 +1 = 40
15.

A sector of a circle is bounded by two radii 7cm long and an arc length 6cm. Find the area of the sector.

A. 42cm2

B. 3cm2

C. 21cm2

D. 24cm2

E. 12cm2

Detailed Solution

Length of arc = \(\frac{\theta}{360}\) x 2\(\pi\)r = 6

\(\theta\) x 2\(\pi\)r = 360 x 6

\(\theta\) = \(\frac{360 \times 6}{2\pi r}\)

Area of the sector = \(\frac{\theta}{360}\) x \(\pi\)r2

\(\frac{360 \times 6}{2\pi r}\) x \(\frac{1}{360}\) x \(\pi\)r2 = r

= 3 x 7

= 21cm2
16.

Given that p:q = \(\frac{1}{3}\):\(\frac{1}{2}\) and q:r = \(\frac{2}{5}\), find p:r

A. 4:105

B. 7:15

C. 20:21

D. 2:35

E. 3:20

Detailed Solution

\(p : q = \frac{1}{3} : \frac{1}{2}\)
\(\frac{p}{q} = \frac{2}{3}\)
\(2q = 3p ... (1)\)
\(q : r = \frac{2}{5} : \frac{4}{7}\)
\(\frac{q}{r} = \frac{2}{5} \times \frac{7}{4} = \frac{7}{10}\)
\(10q = 7r ... (2)\)
Eliminating q, we have
(1) : \(2q = 3p \)
\(10q = 15p\)
\(\implies 15p = 7r\)
\(\therefore \frac{p}{r} = \frac{7}{15}\)
\(p : r = 7 : 15\)
17.

If sin \(\theta\) = \(\frac{m - n}{m + n}\); Find the value of 1 + tan2\(\theta\)

A. \(\frac{(m^2 + n^2)}{m + n}\)

B. \(\frac{(m^2 + n^2 + 2mn)}{4mn}\)

C. \(\frac{2(m^2 + n^2 + mn)}{m + n}\)

D. \(\frac{(m^2 + n^2 + mn)}{m + n}\)

Detailed Solution

\((m + n)^{2} = (m - n)^{2} + x^{2}\)
\(m^{2} + 2mn + n^{2} = m^{2} - 2mn + n^{2} + x^{2}\)
\(x^{2} = 4mn\)
\(x = \sqrt{4mn} = 2\sqrt{mn}\)
1 + tan2\(\theta\) = sec2\(\theta\)

= \(\frac{1}{cos^2\theta}\)

\(\cos \theta = \frac{2\sqrt{mn}}{(m + n)}\)
\(\frac{1}{\cos \theta} = \frac{(m + n)}{2\sqrt{mn}}\)
\(\sec^{2} \theta = \frac{(m + n)^{2}}{4mn}\)
= \(\frac{(m^2 + n^2 + 2mn)}{4mn}\)
18.

The currency used in a country is called 'Matimalik'(M) and is of base seven. A lady in that country bought 4 bags of rice at M56 per bag and and 3 tins of milk at M4 per tin. What is the total cost of the item she bought?

A. M2467

B. M2427

C. M2367

D. M3417

E. M3387

Detailed Solution

4 bags of rice - M 56 each
3 tins of milk - M 4 each
\(M 56 \times 4 = M 323\)
\(M 4 \times 3 = M 15\)
\(M (323 + 15) = M 341\)

19.

Solve for x, If \(\frac{\frac{2}{x}}{\frac{p^2 + p^2}{p^2 + p^2}}\) = m

A. \(\frac{4pq}{m(p + q)}\)

B. \(\frac{2p^2q^2}{m(q^2 + p^2)}\)

C. \(\frac{2pq}{m(q^2 + p^2)}\)

D. \(\frac{2p^2q^2}{m(p^2)}\)

Detailed Solution

\(\frac{1}{p^2}\) + \(\frac{1}{q^2}\) = \(\frac{q^2 + p^2}{p^2 + q^2}\)

\(\frac{\frac{2}{x}}{\frac{p^2 + p^2}{p^2 + p^2}}\)

m = \(\frac{2p^2q^2}{x(p^2 + q^2)}\)

= m2p2q2 = m x (p2 + q2)

x = \(\frac{2p^2q^2}{m(q^2 + p^2)}\)
20.

Express 37.05 x 0.0042 in standard form

A. 15.561 x 102

B. 1.5561 x 10-4

C. 1.556 x 10-1

D. 1.5561 x 101

E. 1.55 x 101

Detailed Solution

37.05 x 0.0042 in standard form

\(\begin{array}{c|c}No. & log \\\hline 37.05 & 1.5688\\ 0.0042 & 3.6232 \\ \hline & 1.1920\end{array}\)

= 0.1556

= 1.556 x 10-1