Year : 
2013
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

41 - 48 of 48 Questions

# Question Ans
41.

The locus of the points which is equidistant from the line PQ forms a

A. perpendicular line to PQ

B. circle centre P

C. circle centre Q

D. pair of parallel lines to PQ

Detailed Solution

There is an explanation video available below.
42.

If the midpoint of the line PQ is (2,3) and the point P is (-2, 1), find the coordinate of the point Q.

A. (8,6)

B. (5,6)

C. (0,4)

D. (6,5)

Detailed Solution

Midpoint of a line PQ where P has coordinates (x\(_{1}\), y\(_{1}\)) and Q has coordinates (x\(_{2}\), y\(_{2}\)) is given as
\((\frac{x_{1} + x_{2}}{2}, \frac{y_{1} + y_{2}}{2})\).
\(\therefore\) If Q has coordinates (r, s), then
\(\frac{-2 + r}{2} = 2\) and \(\frac{1 + s}{2} = 3\)
\(-2 + r = 4 \implies r = 6\)
\(1 + s = 6 \implies s = 5\)
Q = (6, 5)
There is an explanation video available below.
43.

Find the equation of the perpendicular bisector of the line joining P(2, -3) to Q(-5, 1)

A. 8y + 14x + 13 = 0

B. 8y - 14x + 13 = 0

C. 8y - 14x - 13 = 0

D. 8y + 14x - 13 = 0

Detailed Solution

Given P(2, -3) and Q(-5, 1)
Midpoint = \((\frac{2 + (-5)}{2}, \frac{-3 + 1}{2})\)
= \((\frac{-3}{2}, -1)\)
Slope of the line PQ = \(\frac{1 - (-3)}{-5 - 2}\)
= \(-\frac{4}{7}\)
The slope of the perpendicular line to PQ = \(\frac{-1}{-\frac{4}{7}}\)
= \(\frac{7}{4}\)
The equation of the perpendicular line: \(y = \frac{7}{4}x + b\)
Using a point on the line (in this case, the midpoint) to find the value of b (the intercept).
\(-1 = (\frac{7}{4})(\frac{-3}{2}) + b\)
\(-1 + \frac{21}{8} = \frac{13}{8} = b\)
\(\therefore\) The equation of the perpendicular bisector of the line PQ is \(y = \frac{7}{4}x + \frac{13}{8}\)
\(\equiv 8y = 14x + 1
44.

In triangle PQR, q = 8 cm, r = 6 cm and cos P = \(\frac{1}{12}\). Calculate the value of p.

A. \(\sqrt{108}\) cm

B. 9 cm

C. \(\sqrt{92}\) cm

D. 10 cm

Detailed Solution

Using the cosine rule, we have
\(p^{2} = q^{2} + r^{2} - 2qr \cos P\)
\(p^{2} = 8^{2} + 6^{2} - 2(8)(6)(\frac{1}{12})\)
= \(64 + 36 - 8\)
\(p^{2} = 92 \therefore p = \sqrt{92} cm\)
There is an explanation video available below.
45.

If \(\tan \theta = \frac{3}{4}\), find the value of \(\sin \theta + \cos \theta\).

A. \(1\frac{1}{3}\)

B. \(1\frac{2}{3}\)

C. \(1\frac{3}{5}\)

D. \(1\frac{2}{5}\)

Detailed Solution

\(\tan \theta = \frac{opp}{adj} = \frac{3}{4}\)
\(hyp^{2} = opp^{2} + adj^{2}\)
\(hyp = \sqrt{3^{2} + 4^{2}}\)
= 5
\(\sin \theta = \frac{3}{5}; \cos \theta = \frac{4}{5}\)
\(\sin \theta + \cos \theta = \frac{3}{5} + \frac{4}{5}\)
= \(\frac{7}{5} = 1\frac{2}{5}\)
There is an explanation video available below.
46.

Integrate \(\frac{1 + x}{x^{3}} \mathrm d x\)

A. \(2x^{2} - \frac{1}{x} + k\)

B. \(-\frac{1}{2x^{2}} - \frac{1}{x} + k\)

C. \(-\frac{x^{2}}{2} - \frac{1}{x} + k\)

D. \(x^{2} - \frac{1}{x} + k\)

Detailed Solution

\(\int \frac{1 + x}{x^{3}} \mathrm d x\)
= \(\int (\frac{1}{x^{3}} + \frac{x}{x^{3}}) \mathrm d x\)
= \(\int (x^{-3} + x^{-2}) \mathrm d x\)
= \(\frac{-1}{2x^{2}} - \frac{1}{x} + k\)
There is an explanation video available below.
47.

Evaluate \(\int_{0} ^{\frac{\pi}{2}} \sin x \mathrm d x\)

A. -2

B. 2

C. 1

D. -1

Detailed Solution

\(\int_{0} ^{\frac{\pi}{2}} \sin x \mathrm d x\)
= \(- \cos x |_{0} ^{\frac{\pi}{2}\)
= \(- \cos (\frac{\pi}{2}) - (- \cos 0)\)
= \(0 + 1\)
= 1
There is an explanation video available below.
48.

P, Q and R are subsets of the universal set U. The Venn diagram showing the relationship \((P \cap Q) \cup R\) is

A. 1

B. 2

C. 3

D. 4

Detailed Solution

There is an explanation video available below.
41.

The locus of the points which is equidistant from the line PQ forms a

A. perpendicular line to PQ

B. circle centre P

C. circle centre Q

D. pair of parallel lines to PQ

Detailed Solution

There is an explanation video available below.
42.

If the midpoint of the line PQ is (2,3) and the point P is (-2, 1), find the coordinate of the point Q.

A. (8,6)

B. (5,6)

C. (0,4)

D. (6,5)

Detailed Solution

Midpoint of a line PQ where P has coordinates (x\(_{1}\), y\(_{1}\)) and Q has coordinates (x\(_{2}\), y\(_{2}\)) is given as
\((\frac{x_{1} + x_{2}}{2}, \frac{y_{1} + y_{2}}{2})\).
\(\therefore\) If Q has coordinates (r, s), then
\(\frac{-2 + r}{2} = 2\) and \(\frac{1 + s}{2} = 3\)
\(-2 + r = 4 \implies r = 6\)
\(1 + s = 6 \implies s = 5\)
Q = (6, 5)
There is an explanation video available below.
43.

Find the equation of the perpendicular bisector of the line joining P(2, -3) to Q(-5, 1)

A. 8y + 14x + 13 = 0

B. 8y - 14x + 13 = 0

C. 8y - 14x - 13 = 0

D. 8y + 14x - 13 = 0

Detailed Solution

Given P(2, -3) and Q(-5, 1)
Midpoint = \((\frac{2 + (-5)}{2}, \frac{-3 + 1}{2})\)
= \((\frac{-3}{2}, -1)\)
Slope of the line PQ = \(\frac{1 - (-3)}{-5 - 2}\)
= \(-\frac{4}{7}\)
The slope of the perpendicular line to PQ = \(\frac{-1}{-\frac{4}{7}}\)
= \(\frac{7}{4}\)
The equation of the perpendicular line: \(y = \frac{7}{4}x + b\)
Using a point on the line (in this case, the midpoint) to find the value of b (the intercept).
\(-1 = (\frac{7}{4})(\frac{-3}{2}) + b\)
\(-1 + \frac{21}{8} = \frac{13}{8} = b\)
\(\therefore\) The equation of the perpendicular bisector of the line PQ is \(y = \frac{7}{4}x + \frac{13}{8}\)
\(\equiv 8y = 14x + 1
44.

In triangle PQR, q = 8 cm, r = 6 cm and cos P = \(\frac{1}{12}\). Calculate the value of p.

A. \(\sqrt{108}\) cm

B. 9 cm

C. \(\sqrt{92}\) cm

D. 10 cm

Detailed Solution

Using the cosine rule, we have
\(p^{2} = q^{2} + r^{2} - 2qr \cos P\)
\(p^{2} = 8^{2} + 6^{2} - 2(8)(6)(\frac{1}{12})\)
= \(64 + 36 - 8\)
\(p^{2} = 92 \therefore p = \sqrt{92} cm\)
There is an explanation video available below.
45.

If \(\tan \theta = \frac{3}{4}\), find the value of \(\sin \theta + \cos \theta\).

A. \(1\frac{1}{3}\)

B. \(1\frac{2}{3}\)

C. \(1\frac{3}{5}\)

D. \(1\frac{2}{5}\)

Detailed Solution

\(\tan \theta = \frac{opp}{adj} = \frac{3}{4}\)
\(hyp^{2} = opp^{2} + adj^{2}\)
\(hyp = \sqrt{3^{2} + 4^{2}}\)
= 5
\(\sin \theta = \frac{3}{5}; \cos \theta = \frac{4}{5}\)
\(\sin \theta + \cos \theta = \frac{3}{5} + \frac{4}{5}\)
= \(\frac{7}{5} = 1\frac{2}{5}\)
There is an explanation video available below.
46.

Integrate \(\frac{1 + x}{x^{3}} \mathrm d x\)

A. \(2x^{2} - \frac{1}{x} + k\)

B. \(-\frac{1}{2x^{2}} - \frac{1}{x} + k\)

C. \(-\frac{x^{2}}{2} - \frac{1}{x} + k\)

D. \(x^{2} - \frac{1}{x} + k\)

Detailed Solution

\(\int \frac{1 + x}{x^{3}} \mathrm d x\)
= \(\int (\frac{1}{x^{3}} + \frac{x}{x^{3}}) \mathrm d x\)
= \(\int (x^{-3} + x^{-2}) \mathrm d x\)
= \(\frac{-1}{2x^{2}} - \frac{1}{x} + k\)
There is an explanation video available below.
47.

Evaluate \(\int_{0} ^{\frac{\pi}{2}} \sin x \mathrm d x\)

A. -2

B. 2

C. 1

D. -1

Detailed Solution

\(\int_{0} ^{\frac{\pi}{2}} \sin x \mathrm d x\)
= \(- \cos x |_{0} ^{\frac{\pi}{2}\)
= \(- \cos (\frac{\pi}{2}) - (- \cos 0)\)
= \(0 + 1\)
= 1
There is an explanation video available below.
48.

P, Q and R are subsets of the universal set U. The Venn diagram showing the relationship \((P \cap Q) \cup R\) is

A. 1

B. 2

C. 3

D. 4

Detailed Solution

There is an explanation video available below.