Year : 
2013
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 48 Questions

# Question Ans
11.

The remainder when 6p3 - p2 - 47p + 30 is divided by p - 3 is

A. 21

B. 42

C. 63

D. 18

Detailed Solution

There is an explanation video available below.
12.

P varies jointly as m and u, and varies inversely as q. Given that p = 4, m = 3 and u = 2 and q = 1, find the value of p when m = 6, u = 4 and q =\(\frac{8}{5}\)

A. 12\(\frac{8}{5}\)

B. 15

C. 10

D. 28\(\frac{8}{5}\)

Detailed Solution

There is an explanation video available below.
13.

If r varies inversely as the square root of s and t, how does s vary with r and t?

A. s varies inversely as r and t2

B. s varies inverely as r2 and t

C. s varies directly as r2 and t2

D. s varies directly as r and t

Detailed Solution

There is an explanation video available below.
14.

Evaluate 3(x + 2) > 6(x + 3)

A. x < 4

B. x > -4

C. x < -4

D. x > 4

Detailed Solution

There is an explanation video available below.
15.

Solve for x: |x - 2| < 3

A. x < 5

B. -2 < x < 3

C. -1 < x < 5

D. x < 1

Detailed Solution

|x - 2| < 3 implies

-(x - 2) < 3 .... or .... +(x - 2) < 3

-x + 2 < 3 .... or .... x - 2 < 3

-x < 3 - 2 .... or .... x < 3 + 2

x > -1 .... or .... x < 5

combining the two inequalities results, we get;

-1 < x < 5
There is an explanation video available below.
16.

The nth term of the progression \(\frac{4}{2}\), \(\frac{7}{3}\), \(\frac{10}{4}\), \(\frac{13}{5}\) is ...

A. \(\frac{1 - 3n}{n + 1}\)

B. \(\frac{3n + 1}{n + 1}\)

C. \(\frac{3n + 1}{n - 1}\)

D. \(\frac{3n - 1}{n + 1}\)

Detailed Solution

There is an explanation video available below.
17.

If a binary operation * is defined by x * y = x + 2y, find 2 * (3 * 4)

A. 24

B. 16

C. 14

D. 26

Detailed Solution

There is an explanation video available below.
18.

If P = \(\begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}\) and Q = \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\), find 2P + Q

A. \(\begin{vmatrix} 7 & 7 \\ 14 & 8 \end{vmatrix}\)

B. \(\begin{vmatrix} 14 & 8 \\ 7 & 7 \end{vmatrix}\)

C. \(\begin{vmatrix} 7 & 7 \\ 8 & 14 \end{vmatrix}\)

D. \(\begin{vmatrix} 8 & 14 \\ 7 & 7 \end{vmatrix}\)

Detailed Solution

2P + Q = 2\(\begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\)

= \(\begin{pmatrix} 10 & 6 \\ 4 & 2 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\)

= \(\begin{pmatrix} 14 & 8 \\ 7 & 7 \end{pmatrix}\)
There is an explanation video available below.
19.

Find the inverse \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\)

A. \(\begin{vmatrix} 2 & -\frac{3}{2} \\ -3 & -\frac{5}{2} \end{vmatrix}\)

B. \(\begin{vmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)

C. \(\begin{vmatrix} 2 & \frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)

D. \(\begin{vmatrix} 2 & \frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)

Detailed Solution

Let A = \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\)

Then |A| = \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\) = 20 - 18 = 2

Hence A-1 = \(\frac{1}{|A|}\begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}\)

= \(\frac{1}{2}\begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}\)

= \(\begin{pmatrix} 4 \times 1/2 & -3 \times 1/2 \\ -6 \times 1/2 & 5 \times 1/2 \end{pmatrix}\)

= \(\begin{pmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{pmatrix}\)
There is an explanation video available
20.

If y = x sin x, find \(\frac{\delta y}{\delta x}\)

A. sin x - cos x

B. cos x - x sin x

C. cos x + x sin x

D. sin x + x cos x

Detailed Solution

There is an explanation video available below.
11.

The remainder when 6p3 - p2 - 47p + 30 is divided by p - 3 is

A. 21

B. 42

C. 63

D. 18

Detailed Solution

There is an explanation video available below.
12.

P varies jointly as m and u, and varies inversely as q. Given that p = 4, m = 3 and u = 2 and q = 1, find the value of p when m = 6, u = 4 and q =\(\frac{8}{5}\)

A. 12\(\frac{8}{5}\)

B. 15

C. 10

D. 28\(\frac{8}{5}\)

Detailed Solution

There is an explanation video available below.
13.

If r varies inversely as the square root of s and t, how does s vary with r and t?

A. s varies inversely as r and t2

B. s varies inverely as r2 and t

C. s varies directly as r2 and t2

D. s varies directly as r and t

Detailed Solution

There is an explanation video available below.
14.

Evaluate 3(x + 2) > 6(x + 3)

A. x < 4

B. x > -4

C. x < -4

D. x > 4

Detailed Solution

There is an explanation video available below.
15.

Solve for x: |x - 2| < 3

A. x < 5

B. -2 < x < 3

C. -1 < x < 5

D. x < 1

Detailed Solution

|x - 2| < 3 implies

-(x - 2) < 3 .... or .... +(x - 2) < 3

-x + 2 < 3 .... or .... x - 2 < 3

-x < 3 - 2 .... or .... x < 3 + 2

x > -1 .... or .... x < 5

combining the two inequalities results, we get;

-1 < x < 5
There is an explanation video available below.
16.

The nth term of the progression \(\frac{4}{2}\), \(\frac{7}{3}\), \(\frac{10}{4}\), \(\frac{13}{5}\) is ...

A. \(\frac{1 - 3n}{n + 1}\)

B. \(\frac{3n + 1}{n + 1}\)

C. \(\frac{3n + 1}{n - 1}\)

D. \(\frac{3n - 1}{n + 1}\)

Detailed Solution

There is an explanation video available below.
17.

If a binary operation * is defined by x * y = x + 2y, find 2 * (3 * 4)

A. 24

B. 16

C. 14

D. 26

Detailed Solution

There is an explanation video available below.
18.

If P = \(\begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}\) and Q = \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\), find 2P + Q

A. \(\begin{vmatrix} 7 & 7 \\ 14 & 8 \end{vmatrix}\)

B. \(\begin{vmatrix} 14 & 8 \\ 7 & 7 \end{vmatrix}\)

C. \(\begin{vmatrix} 7 & 7 \\ 8 & 14 \end{vmatrix}\)

D. \(\begin{vmatrix} 8 & 14 \\ 7 & 7 \end{vmatrix}\)

Detailed Solution

2P + Q = 2\(\begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\)

= \(\begin{pmatrix} 10 & 6 \\ 4 & 2 \end{pmatrix}\) + \(\begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}\)

= \(\begin{pmatrix} 14 & 8 \\ 7 & 7 \end{pmatrix}\)
There is an explanation video available below.
19.

Find the inverse \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\)

A. \(\begin{vmatrix} 2 & -\frac{3}{2} \\ -3 & -\frac{5}{2} \end{vmatrix}\)

B. \(\begin{vmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)

C. \(\begin{vmatrix} 2 & \frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)

D. \(\begin{vmatrix} 2 & \frac{3}{2} \\ -3 & \frac{5}{2} \end{vmatrix}\)

Detailed Solution

Let A = \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\)

Then |A| = \(\begin{pmatrix} 5 & 3 \\ 6 & 4 \end{pmatrix}\) = 20 - 18 = 2

Hence A-1 = \(\frac{1}{|A|}\begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}\)

= \(\frac{1}{2}\begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}\)

= \(\begin{pmatrix} 4 \times 1/2 & -3 \times 1/2 \\ -6 \times 1/2 & 5 \times 1/2 \end{pmatrix}\)

= \(\begin{pmatrix} 2 & -\frac{3}{2} \\ -3 & \frac{5}{2} \end{pmatrix}\)
There is an explanation video available
20.

If y = x sin x, find \(\frac{\delta y}{\delta x}\)

A. sin x - cos x

B. cos x - x sin x

C. cos x + x sin x

D. sin x + x cos x

Detailed Solution

There is an explanation video available below.