11 - 20 of 49 Questions
# | Question | Ans |
---|---|---|
11. |
Solve the inequality: 3(x + 1) \(\leq\) 5(x + 2) + 15 A. x \(\geq\) -14 B. x \(\leq\) - 14 C. x \(\geq\) -11 D. x \(\leq\) - 11 Detailed Solution3(x + 1) \(\leq\) 5(x + 2) + 153x + 3 \(\leq\) 5x + 10 + 15 3x - 5x \(\geq\) 10 + 15 - 3 -2x \(\geq\) 22 x \(\leq\) \(\frac{-22}{2}\) x \(\leq\) -11 |
|
12. |
An empty rectangular tank is 250cm long and 120cm wide. If 180 litres of water is poured into the tank. Calculate the height of the water A. 6.0cm B. 5.5cm C. 5.0cm D. 4.5cm Detailed SolutionVolume of water in tank = l x b x h = 180 litresbut 1 litre = 1000cm2 250 x 120 x hw = 180 x 1000 hw = \(\frac{180 \times 1000}{250 \times 120}\) = 6cm |
|
13. |
Given that \(\frac{5^{n +3}}{25^{2n -2}}\) = 5o, find n A. n = 1 B. n = 2 C. n = 3 D. n = 5 Detailed Solution\(\frac{5^{n +3}}{25^{2n -2}}\) = 5o\(\frac{5^{n + 3}}{5^{2(2n - 3)}}\) = 5o n + 3 - 4n + 6 = 0 -3n + 9 = 0 -3n = -9 n = \(\frac{-9}{-3}\) n = 3 |
|
14. |
\(\begin{array}{c|c} \text{No. of pets} & 0 & 1 & 2 & 3 & 4 \\ \hline \text{No. of students} & 8 & 4 & 5 & 10 & 3\end{array}\) The table shows the number of pets kept by 30 students in a class. If a student is picked at random ftom the class. What is the probability that he/she kept more than one pet? A. \(\frac{1}{5}\) B. \(\frac{2}{5}\) C. \(\frac{3}{5}\) D. \(\frac{4}{5}\) Detailed Solutionpr. (More than one pet)= \(\frac{\text{No. of students with > 1 pet}}{\text{total no. of students}}\) = \(\frac{5 + 10 + 3}{30}\) = \(\frac{18}{30}\) = \(\frac{3}{5}\) |
|
15. |
Simplify 2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\) A. 1 B. \(\frac{1}{3}\sqrt{3}\) C. 2\(\sqrt{3} - 5\frac{2}{3}\) D. 6\(\sqrt{3}\) - 17 Detailed Solution2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\)= 2\(\sqrt{3} - \frac{6}{\sqrt{3}} + \frac{3}{\sqrt{9 \times 3}}\) = 2\(\sqrt{3} - \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{3}{3\sqrt{3}}\) = 2\(\sqrt{3} = 6 \frac{\sqrt{3}}{3} + \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}\) = 2\(\sqrt{3} - 2\sqrt{3} + \frac{\sqrt{3}}{3}\) = \(\frac{\sqrt{3}}{3} = \frac{1}{3} \sqrt{3}\) |
|
16. |
If sin 3y = cos 2y and 0o \(\leq\) 90o, find the value of y A. 18o B. 36o C. 54o D. 90o Detailed Solutionsin 3y = cos 2y, but sin \(\theta\) = cos(90 - \(\theta\))sin 3y = cos(90 - 3y) cos(90 - 3y) = cos 2y 90 - 3y = 2y 5y = 90 y = \(\frac{90}{5}\) y = 18o |
|
17. |
A rectangle has length xcm and width (x - 1)cm. If the perimeter is 16cm. Find the value of x A. 3\(\frac{1}{2}\)cm B. 4cm C. 4\(\frac{1}{2}\)cm D. 5cm Detailed Solutionl = x; b = x - 1perimeter = 2(l + b) = 16 l + b = \(\frac{16}{2}\) = 8 l + b = 8 x + x - 1 = 8 2x = 8 + 1 2x = 9 x = \(\frac{9}{2}\)cm x = 4\(\frac{1}{2}\) |
|
18. |
Given that tan x = 1, where 0o \(\geq\) x 90o, evaluate \(\frac{1 - \sin^2 x}{\cos x}\) A. 2\(\sqrt{2}\) B. \(\sqrt{2}\) C. \(\frac{\sqrt{2}}{2}\) D. \(\frac{1}{2}\) Detailed SolutionGiven tan x = 1x = tan-1(1) x = 45o Now, \(\frac{1 - ( \frac{1}{\sqrt{2} )^2}}{\frac{1}{\sqrt{2}}}\) = \(\frac{1 - \frac{1}{2}}{\frac{1}{2}}\) = \(\frac{1}{2} + \frac{1}{\sqrt{2}}\) = \(\frac{1}{2} \times \frac{1}{\sqrt{2}}\) = \(\frac{\sqrt{2}}{2}\) |
|
19. |
What is the length of a rectangular garden whose perimeter is 32cm and area 39cm2? A. 25cm B. 18cm C. 13cm D. 9cm Detailed Solutionperimeter = 2(l + b) = 32l + b = \(\frac{32}{2}\) l + b = 16 b = 16 - 1.......(1) Area = l + b = 39 lb = 39 .....(2) put (1) into (2) l(16 - 1) = 39 16l - l2 = 39 l2 = 13l - 3l + 39 = 0 l(l - 13) - 3(1 - 13) = 0 (l - 3)(l + 130 = 0 l - 3 = 0 or l - 13 = 0 l = 3cm or l = 13cm; The length in 13cm |
|
20. |
Simplify \(\frac{2}{2 + x} + \frac{2}{2 - x}\) A. \(\frac{4}{4 - x^3}\) B. \(\frac{8}{4 - x^2}\) C. \(\frac{4x}{4 - x^2}\) D. \(\frac{8 - 4x}{4 - x^2}\) Detailed Solution\(\frac{2}{2 + x} + \frac{2}{2 - x}\)\(\frac{2(2 - x) + 2(2 + x)}{(2 + x)(2 - x)} = \frac{4 - 2x + 4 + 2x}{4 - 2x + 2x - x^2}\) = \(\frac{8}{4 - x62}\) |
11. |
Solve the inequality: 3(x + 1) \(\leq\) 5(x + 2) + 15 A. x \(\geq\) -14 B. x \(\leq\) - 14 C. x \(\geq\) -11 D. x \(\leq\) - 11 Detailed Solution3(x + 1) \(\leq\) 5(x + 2) + 153x + 3 \(\leq\) 5x + 10 + 15 3x - 5x \(\geq\) 10 + 15 - 3 -2x \(\geq\) 22 x \(\leq\) \(\frac{-22}{2}\) x \(\leq\) -11 |
|
12. |
An empty rectangular tank is 250cm long and 120cm wide. If 180 litres of water is poured into the tank. Calculate the height of the water A. 6.0cm B. 5.5cm C. 5.0cm D. 4.5cm Detailed SolutionVolume of water in tank = l x b x h = 180 litresbut 1 litre = 1000cm2 250 x 120 x hw = 180 x 1000 hw = \(\frac{180 \times 1000}{250 \times 120}\) = 6cm |
|
13. |
Given that \(\frac{5^{n +3}}{25^{2n -2}}\) = 5o, find n A. n = 1 B. n = 2 C. n = 3 D. n = 5 Detailed Solution\(\frac{5^{n +3}}{25^{2n -2}}\) = 5o\(\frac{5^{n + 3}}{5^{2(2n - 3)}}\) = 5o n + 3 - 4n + 6 = 0 -3n + 9 = 0 -3n = -9 n = \(\frac{-9}{-3}\) n = 3 |
|
14. |
\(\begin{array}{c|c} \text{No. of pets} & 0 & 1 & 2 & 3 & 4 \\ \hline \text{No. of students} & 8 & 4 & 5 & 10 & 3\end{array}\) The table shows the number of pets kept by 30 students in a class. If a student is picked at random ftom the class. What is the probability that he/she kept more than one pet? A. \(\frac{1}{5}\) B. \(\frac{2}{5}\) C. \(\frac{3}{5}\) D. \(\frac{4}{5}\) Detailed Solutionpr. (More than one pet)= \(\frac{\text{No. of students with > 1 pet}}{\text{total no. of students}}\) = \(\frac{5 + 10 + 3}{30}\) = \(\frac{18}{30}\) = \(\frac{3}{5}\) |
|
15. |
Simplify 2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\) A. 1 B. \(\frac{1}{3}\sqrt{3}\) C. 2\(\sqrt{3} - 5\frac{2}{3}\) D. 6\(\sqrt{3}\) - 17 Detailed Solution2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\)= 2\(\sqrt{3} - \frac{6}{\sqrt{3}} + \frac{3}{\sqrt{9 \times 3}}\) = 2\(\sqrt{3} - \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{3}{3\sqrt{3}}\) = 2\(\sqrt{3} = 6 \frac{\sqrt{3}}{3} + \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}\) = 2\(\sqrt{3} - 2\sqrt{3} + \frac{\sqrt{3}}{3}\) = \(\frac{\sqrt{3}}{3} = \frac{1}{3} \sqrt{3}\) |
16. |
If sin 3y = cos 2y and 0o \(\leq\) 90o, find the value of y A. 18o B. 36o C. 54o D. 90o Detailed Solutionsin 3y = cos 2y, but sin \(\theta\) = cos(90 - \(\theta\))sin 3y = cos(90 - 3y) cos(90 - 3y) = cos 2y 90 - 3y = 2y 5y = 90 y = \(\frac{90}{5}\) y = 18o |
|
17. |
A rectangle has length xcm and width (x - 1)cm. If the perimeter is 16cm. Find the value of x A. 3\(\frac{1}{2}\)cm B. 4cm C. 4\(\frac{1}{2}\)cm D. 5cm Detailed Solutionl = x; b = x - 1perimeter = 2(l + b) = 16 l + b = \(\frac{16}{2}\) = 8 l + b = 8 x + x - 1 = 8 2x = 8 + 1 2x = 9 x = \(\frac{9}{2}\)cm x = 4\(\frac{1}{2}\) |
|
18. |
Given that tan x = 1, where 0o \(\geq\) x 90o, evaluate \(\frac{1 - \sin^2 x}{\cos x}\) A. 2\(\sqrt{2}\) B. \(\sqrt{2}\) C. \(\frac{\sqrt{2}}{2}\) D. \(\frac{1}{2}\) Detailed SolutionGiven tan x = 1x = tan-1(1) x = 45o Now, \(\frac{1 - ( \frac{1}{\sqrt{2} )^2}}{\frac{1}{\sqrt{2}}}\) = \(\frac{1 - \frac{1}{2}}{\frac{1}{2}}\) = \(\frac{1}{2} + \frac{1}{\sqrt{2}}\) = \(\frac{1}{2} \times \frac{1}{\sqrt{2}}\) = \(\frac{\sqrt{2}}{2}\) |
|
19. |
What is the length of a rectangular garden whose perimeter is 32cm and area 39cm2? A. 25cm B. 18cm C. 13cm D. 9cm Detailed Solutionperimeter = 2(l + b) = 32l + b = \(\frac{32}{2}\) l + b = 16 b = 16 - 1.......(1) Area = l + b = 39 lb = 39 .....(2) put (1) into (2) l(16 - 1) = 39 16l - l2 = 39 l2 = 13l - 3l + 39 = 0 l(l - 13) - 3(1 - 13) = 0 (l - 3)(l + 130 = 0 l - 3 = 0 or l - 13 = 0 l = 3cm or l = 13cm; The length in 13cm |
|
20. |
Simplify \(\frac{2}{2 + x} + \frac{2}{2 - x}\) A. \(\frac{4}{4 - x^3}\) B. \(\frac{8}{4 - x^2}\) C. \(\frac{4x}{4 - x^2}\) D. \(\frac{8 - 4x}{4 - x^2}\) Detailed Solution\(\frac{2}{2 + x} + \frac{2}{2 - x}\)\(\frac{2(2 - x) + 2(2 + x)}{(2 + x)(2 - x)} = \frac{4 - 2x + 4 + 2x}{4 - 2x + 2x - x^2}\) = \(\frac{8}{4 - x62}\) |