Year : 
2006
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 50 Questions

# Question Ans
21.

Evaluate \(\frac{2}{6-5\sqrt{3}}\)

A. \(-\left(\frac{12}{39}-\frac{10\sqrt{3}}{39}\right)\)

B. \(\frac{12}{39}-\frac{10\sqrt{3}}{39}\)

C. \(-\left(\frac{12}{39}+\frac{10\sqrt{3}}{39}\right)\)

D. \(\frac{12}{39}+\frac{10\sqrt{3}}{39}\)

Detailed Solution

\(\frac{2}{6-5\sqrt{3}} = \frac{2}{6-5\sqrt{3}} \times \frac{6+5\sqrt{3}}{6+5\sqrt{3}}\\
=\frac{2(6+5\sqrt{3})}{(6-5\sqrt{3})(6+5\sqrt{3})}\\
=\frac{12+10-\sqrt{3}}{36-25(3)}\\
=\frac{12+10-\sqrt{3}}{36-75}\\
=\frac{12+10-\sqrt{3}}{-39}\\
=-\left(\frac{12}{39}-\frac{10\sqrt{3}}{39}\right)\)
22.

Compute 1100112 + 111112

A. 10010102

B. 10100102

C. 10001102

D. 10001002

Detailed Solution

1100112 + 111112 = 10100102
23.

Simplify \((25)^{\frac{-1}{2}} \times (27)^{\frac{1}{3}} + (121)^{\frac{-1}{2}} \times (625)^{\frac{-1}{4}}\)

A. 34/55

B. 9/11

C. 14/5

D. 3/275

Detailed Solution

(25)\(^{\frac{-1}{2}}\) x (27)\(^{\frac{1}{3}}\) + (121)\(^{\frac{-1}{2}}\) x (625)\(^{\frac{-1}{4}}\)
5\(^{2 \times \frac{-1}{2}}\) x 3\(^{3 \times \frac{1}{3}}\) + 11\(^{2 \times \frac{-1}{2}}\) x 5\(^{4 \times \frac{-1}{4}}\)
5\(^{-1}\) x 3\(^1\) x 11\(^{-1}\) x 5\(^{-1}\)
\(\frac{1}{5} \times \frac{3}{1} + \frac{1}{11} \times \frac{1}{5}\)
\(\frac{3}{5} + \frac{1}{55} = \frac{33+1}{55}\)
= \(\frac{34}{55}\)
24.

Convert 2232\(_4\) to base six

A. 4506

B. 2546

C. 5536

D. 5406

Detailed Solution

1st convert to base 10
2232\(_4\) = 2 x 4\(^3\) + 2 x 4\(^2\) + 3 x 4\(^1\) + 2 x 4\(^0\)
= 2 x 64 + 2 x 16 + 3 x 4 + 2 x 1
= 128 + 32 + 12 + 2
= 174 convert to base 6
6/174
6/29 R 0
6/4 R 5
6/0 R 4
= 450\(_6\)
25.

In the diagram above, QR is in the diameter of the semicircle QR. Find the area of the figure to the nearest whole number. [\(\pi = \frac{22}{7}\)]

A. 89 cm2

B. 70 cm2

C. 90 cm2

D. 80 cm2

Detailed Solution

Area of rectangle PQRS = \(10 \times 7 = 70cm^2\)
Area of semi-circle: \(\frac{\pi r^{2}}{2}\)
r = \(\frac{7}{2} cm\)
Area of semi-circle = \(\frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\)
= \(\frac{77}{4} = 18.75 cm^{2}\)
Area of figure = \((70 + 18.75) cm^{2}\)
= 88.75 cm\(^{2} \approxeq\) 89 cm\(^{2}\)
26.

If tan θ = 5/4, find sin2θ - cos2θ.

A. 5/4

B. 41/9

C. 9/41

D. 1

Detailed Solution

Tan θ = 5/4
x2 = 52 + 42
= 25 + 16
= 41
x = √41
sin2θ - cos2θ = (5/√41)2 - (4/√41)2
= 25/41 - 16/41
=
27.

PQ and RS are two parallel lines. If the coordinates of P, Q, R, S are (1,q), (3,2), (3,4), (5,2q) respectively, find the value of q

A. 3

B. 4

C. 1

D. 2

Detailed Solution

Gradient PQ, P(1,q) and Q(3,2)
\(=\frac{(2-q)}{(3-1)} = \frac{(2-q)}{2}\)
Gradient of RS : R(3,4) and S(5,2q)
\(= \frac{(2q-4)}{(5-3)}= \frac{(2q-4)}{2} = \frac{2(q-2)}{2}\)
= q-2
Since PQ and RS are parallel,
their gradients are equal
\(∴ \frac{(2-q)}{2} = q-2\)
2-q = 2(q-2)
2-q = 2q-4
2+4 = 2q+q
6 = 3q
q = 2
28.

In triangle XYZ, ∠XYZ = 15o, ∠XZY = 45o and lXYl = 7 cm. Find lYZl.

A. 14√2 cm

B. \(7\left(\frac{\sqrt{6}}{2}\right)\)

C. 7√2 cm

D. 7 cm

Detailed Solution

∠yxz = 180 - (45 + 15)
= 180 - 60
= 120o
Using sine rule
\(\frac{x}{sinx}=\frac{7}{sinz}\\
\frac{x}{sin 120}=\frac{7}{sin 45}\\
x=\frac{7 sin 120}{sin45}\\
x=\frac{7sin(180-120)}{sin 45}\\
x=\frac{7 sin 60}{sin 45}=\left(7\left(\frac{\sqrt{3}}{2}\right)\div \frac{1}{\sqrt{2}}\right)\\
x =\left(7\left(\frac{\sqrt{3}}{2}\right)\div \frac{1}{\sqrt{2}}\right)\\
x = 7\left(\frac{\sqrt{6}}{2}\right)\)
29.

In the diagram above, find the value of x

A. 55o

B. 50o

C. 45o

D. 40o

Detailed Solution

y = 55 (alternate angles)
x = x (same reason)
260 + y + x = 360 (∠s at a point)
260 + 55 + x = 360
315 + x = 360
x = 360 - 315
x = 45o
30.

In the diagram above, POQ is a diameter of the circle PQRS. If ∠PSR = 145°, find x°

A. 55o

B. 45o

C. 35o

D. 25o

Detailed Solution

∠PSQ = 90° (∠ in semi circle)
∠PSQ + ∠QSR = 145°
90 + ∠QSR = 145
∠QSR = 145 - 90
∠QSR = 55°
BUt x° = ∠QSR (∠s in the same segment)
∴x° = 55°
21.

Evaluate \(\frac{2}{6-5\sqrt{3}}\)

A. \(-\left(\frac{12}{39}-\frac{10\sqrt{3}}{39}\right)\)

B. \(\frac{12}{39}-\frac{10\sqrt{3}}{39}\)

C. \(-\left(\frac{12}{39}+\frac{10\sqrt{3}}{39}\right)\)

D. \(\frac{12}{39}+\frac{10\sqrt{3}}{39}\)

Detailed Solution

\(\frac{2}{6-5\sqrt{3}} = \frac{2}{6-5\sqrt{3}} \times \frac{6+5\sqrt{3}}{6+5\sqrt{3}}\\
=\frac{2(6+5\sqrt{3})}{(6-5\sqrt{3})(6+5\sqrt{3})}\\
=\frac{12+10-\sqrt{3}}{36-25(3)}\\
=\frac{12+10-\sqrt{3}}{36-75}\\
=\frac{12+10-\sqrt{3}}{-39}\\
=-\left(\frac{12}{39}-\frac{10\sqrt{3}}{39}\right)\)
22.

Compute 1100112 + 111112

A. 10010102

B. 10100102

C. 10001102

D. 10001002

Detailed Solution

1100112 + 111112 = 10100102
23.

Simplify \((25)^{\frac{-1}{2}} \times (27)^{\frac{1}{3}} + (121)^{\frac{-1}{2}} \times (625)^{\frac{-1}{4}}\)

A. 34/55

B. 9/11

C. 14/5

D. 3/275

Detailed Solution

(25)\(^{\frac{-1}{2}}\) x (27)\(^{\frac{1}{3}}\) + (121)\(^{\frac{-1}{2}}\) x (625)\(^{\frac{-1}{4}}\)
5\(^{2 \times \frac{-1}{2}}\) x 3\(^{3 \times \frac{1}{3}}\) + 11\(^{2 \times \frac{-1}{2}}\) x 5\(^{4 \times \frac{-1}{4}}\)
5\(^{-1}\) x 3\(^1\) x 11\(^{-1}\) x 5\(^{-1}\)
\(\frac{1}{5} \times \frac{3}{1} + \frac{1}{11} \times \frac{1}{5}\)
\(\frac{3}{5} + \frac{1}{55} = \frac{33+1}{55}\)
= \(\frac{34}{55}\)
24.

Convert 2232\(_4\) to base six

A. 4506

B. 2546

C. 5536

D. 5406

Detailed Solution

1st convert to base 10
2232\(_4\) = 2 x 4\(^3\) + 2 x 4\(^2\) + 3 x 4\(^1\) + 2 x 4\(^0\)
= 2 x 64 + 2 x 16 + 3 x 4 + 2 x 1
= 128 + 32 + 12 + 2
= 174 convert to base 6
6/174
6/29 R 0
6/4 R 5
6/0 R 4
= 450\(_6\)
25.

In the diagram above, QR is in the diameter of the semicircle QR. Find the area of the figure to the nearest whole number. [\(\pi = \frac{22}{7}\)]

A. 89 cm2

B. 70 cm2

C. 90 cm2

D. 80 cm2

Detailed Solution

Area of rectangle PQRS = \(10 \times 7 = 70cm^2\)
Area of semi-circle: \(\frac{\pi r^{2}}{2}\)
r = \(\frac{7}{2} cm\)
Area of semi-circle = \(\frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\)
= \(\frac{77}{4} = 18.75 cm^{2}\)
Area of figure = \((70 + 18.75) cm^{2}\)
= 88.75 cm\(^{2} \approxeq\) 89 cm\(^{2}\)
26.

If tan θ = 5/4, find sin2θ - cos2θ.

A. 5/4

B. 41/9

C. 9/41

D. 1

Detailed Solution

Tan θ = 5/4
x2 = 52 + 42
= 25 + 16
= 41
x = √41
sin2θ - cos2θ = (5/√41)2 - (4/√41)2
= 25/41 - 16/41
=
27.

PQ and RS are two parallel lines. If the coordinates of P, Q, R, S are (1,q), (3,2), (3,4), (5,2q) respectively, find the value of q

A. 3

B. 4

C. 1

D. 2

Detailed Solution

Gradient PQ, P(1,q) and Q(3,2)
\(=\frac{(2-q)}{(3-1)} = \frac{(2-q)}{2}\)
Gradient of RS : R(3,4) and S(5,2q)
\(= \frac{(2q-4)}{(5-3)}= \frac{(2q-4)}{2} = \frac{2(q-2)}{2}\)
= q-2
Since PQ and RS are parallel,
their gradients are equal
\(∴ \frac{(2-q)}{2} = q-2\)
2-q = 2(q-2)
2-q = 2q-4
2+4 = 2q+q
6 = 3q
q = 2
28.

In triangle XYZ, ∠XYZ = 15o, ∠XZY = 45o and lXYl = 7 cm. Find lYZl.

A. 14√2 cm

B. \(7\left(\frac{\sqrt{6}}{2}\right)\)

C. 7√2 cm

D. 7 cm

Detailed Solution

∠yxz = 180 - (45 + 15)
= 180 - 60
= 120o
Using sine rule
\(\frac{x}{sinx}=\frac{7}{sinz}\\
\frac{x}{sin 120}=\frac{7}{sin 45}\\
x=\frac{7 sin 120}{sin45}\\
x=\frac{7sin(180-120)}{sin 45}\\
x=\frac{7 sin 60}{sin 45}=\left(7\left(\frac{\sqrt{3}}{2}\right)\div \frac{1}{\sqrt{2}}\right)\\
x =\left(7\left(\frac{\sqrt{3}}{2}\right)\div \frac{1}{\sqrt{2}}\right)\\
x = 7\left(\frac{\sqrt{6}}{2}\right)\)
29.

In the diagram above, find the value of x

A. 55o

B. 50o

C. 45o

D. 40o

Detailed Solution

y = 55 (alternate angles)
x = x (same reason)
260 + y + x = 360 (∠s at a point)
260 + 55 + x = 360
315 + x = 360
x = 360 - 315
x = 45o
30.

In the diagram above, POQ is a diameter of the circle PQRS. If ∠PSR = 145°, find x°

A. 55o

B. 45o

C. 35o

D. 25o

Detailed Solution

∠PSQ = 90° (∠ in semi circle)
∠PSQ + ∠QSR = 145°
90 + ∠QSR = 145
∠QSR = 145 - 90
∠QSR = 55°
BUt x° = ∠QSR (∠s in the same segment)
∴x° = 55°