Year : 
2006
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 50 Questions

# Question Ans
11.

Find the value of x for which the function 3x3 - 9x is minimum

A. zero

B. 2

C. 3

D. 5

Detailed Solution

y = 3x3 - 9x2
dy/dx = 9x2 - 18x
As dy/dx = 0
9x2 - 18x = 0
9x(x-2) = 0
9x = 0 which implies x = 0
x-2 = 0 implies x = 2
d2y/dx2 = 18x - 18
when x = 0
d2y/dx2 < 0 ∴ x is is minimum
when x = 2d2y/dx2 = 18
∴ > 0 x is minimum
12.

If dy/dx = x + cos x, find y

A. x2 - sin x + c

B. x2 + sin x + c

C. x2/2 - sin x + c

D. x2/2 + sin x + c

Detailed Solution

dy/dx = x + cos x
y = ∫(x + cos x)dx
y = 1/2x2 + sin x + C
13.

Differentiate (cos θ - sin θ)\(^2\)

A. -2 cos 2θ

B. -2 sin2θ

C. 1 - 2 cos 2θ

D. 1 - 2 sin 2θ

Detailed Solution

y = (cosθ - sinθ)
dy/dx = 2(cosθ - sinθ)(-sinθ - cosθ)
dy/dx = 2(-cosθsinθ - cos2θ + sin2θ)
dy/dx = 2(- cos\(^2\)θ + sin\(^2\)θ)
= -2(cos\(^2\)θ - sin\(^2\)θ)
= -2(1 - 2sin\(^2\)θ)
= -2cos2θ

14.

Evaluate \(\int_{-4}^0(1 - 2x)dx\)

A. -16

B. -20

C. 20

D. 10

Detailed Solution

\(\int_{-4}^0(1 - 2x)dx=[x-x^2]_{-4}^0\\= (0 - 0 + C) - (-4(-4)^2 + C)\\
= C - (-4-16+C)\\
= C-(-20+C)\\
= C+20-C\\
= 20\)
15.

Simplify \(\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\)

A. \(\frac{11}{12}\)

B. \(\frac{5}{6}\)

C. \(\frac{1}{5}\)

D. \(\frac{2}{15}\)

Detailed Solution

\(\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\\
=\frac{\frac{7-6}{9}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\\
=\frac{\frac{1}{9}}{\frac{1}{3}+\left(\frac{2}{5}\times \frac{5}{4}\right)}\\
=\frac{\frac{1}{9}}{\frac{1}{3}+\frac{1}{2}}\
=\frac{\frac{1}{9}}{\frac{2+3}{6}}\\
=\frac{\frac{1}{9}}{\frac{5}{6}}\\
=\frac{1}{9}\times\frac{6}{5}\\
=\frac{2}{15}\)
16.

If m:n = 13:11, find m\(^2\) - n\(^2\) : (m + n)\(^2\)

A. 1:11

B. 1:13

C. 1:10

D. 1:12

Detailed Solution

m : n = 13 : 11
m\(^2\) - n\(^2\) : (m + n)2
= 13\(^2\) - 11\(^2\) : (13 + 11)\(^2\)
= 169 - 121 : 24\(^2\)
= 48 : 576
= 1 : 12
17.

Calculate the logarithm to base 9 of 3-4 * 92 * (81)-1

A. 2

B. zero

C. -2

D. -4

Detailed Solution

\(3^{-4}\times 9^2 \times 81^{-1}\\
=log_9 (3^{-4}\times 9^2 \times 81^{-1})\\
=log_9 \left(\frac{1}{3^4}\times 9^2 \times \frac{1}{81}\right)\\
=log_9 \left(\frac{1}{81}\times \frac{81}{1}\times \frac{1}{81}\right)\\
=log_9 \frac{1}{81}\\
=log_9 \frac{1}{9^2}\\
=log_9 9^{-2}\\
=-2log_9 9\\
-2 \times 1\\
=-2\)
18.

If (K2)\(_6\) * 3\(_6\) = 3\(_5\)(K4)\(_5\), what is the value of k?

A. 1

B. 4

C. 3

D. 2

Detailed Solution

(K2)\(_6\) * 3\(_6\) = 3\(_5\)(K4)\(_5\)
(K*6\(^1\) + 2*6\(^0\)) 3*6\(^0\) = 3*5\(^0\)(K*5\(^1\) + 4*5\(^0\))
3(6K + 2) = 3(5K + 4)
6K + 2 = 5K + 4
6K - 5K = 4 - 2
K = 2
19.

In a small village of 500 people, 350 speak the local language while 200 speak pidgin English. What percentage of the population speak both.

A. 30%

B. 10%

C. 50%

D. 14%

Detailed Solution

Let n(L∩P) = x
n(L) only = 350 - x
n(P) only = 200 - x
∴350 - x + x + 200 - x = 500
550 - x = 500
x = 550 - 500
x = 50 speak both
∴x% = (50/500) * (100/1)
= 10%
20.

Find the tax on an income of N20,000 if no tax is paid on the first N10,000 and tax is paid at N50 in N1000 on the next N5000 and at N55 in N1000 on the remainder

A. N500

B. N552

C. N255

D. N525

Detailed Solution

N20,000 - N10,000 = N10,000
1st tax on N5000 at N50 per N1000
= 5*50 = N250
2nd tax on the remaining N5000 at N55 per N1000 = 5*55 = N275
Total tax paid = N250 + N275
= N525
11.

Find the value of x for which the function 3x3 - 9x is minimum

A. zero

B. 2

C. 3

D. 5

Detailed Solution

y = 3x3 - 9x2
dy/dx = 9x2 - 18x
As dy/dx = 0
9x2 - 18x = 0
9x(x-2) = 0
9x = 0 which implies x = 0
x-2 = 0 implies x = 2
d2y/dx2 = 18x - 18
when x = 0
d2y/dx2 < 0 ∴ x is is minimum
when x = 2d2y/dx2 = 18
∴ > 0 x is minimum
12.

If dy/dx = x + cos x, find y

A. x2 - sin x + c

B. x2 + sin x + c

C. x2/2 - sin x + c

D. x2/2 + sin x + c

Detailed Solution

dy/dx = x + cos x
y = ∫(x + cos x)dx
y = 1/2x2 + sin x + C
13.

Differentiate (cos θ - sin θ)\(^2\)

A. -2 cos 2θ

B. -2 sin2θ

C. 1 - 2 cos 2θ

D. 1 - 2 sin 2θ

Detailed Solution

y = (cosθ - sinθ)
dy/dx = 2(cosθ - sinθ)(-sinθ - cosθ)
dy/dx = 2(-cosθsinθ - cos2θ + sin2θ)
dy/dx = 2(- cos\(^2\)θ + sin\(^2\)θ)
= -2(cos\(^2\)θ - sin\(^2\)θ)
= -2(1 - 2sin\(^2\)θ)
= -2cos2θ

14.

Evaluate \(\int_{-4}^0(1 - 2x)dx\)

A. -16

B. -20

C. 20

D. 10

Detailed Solution

\(\int_{-4}^0(1 - 2x)dx=[x-x^2]_{-4}^0\\= (0 - 0 + C) - (-4(-4)^2 + C)\\
= C - (-4-16+C)\\
= C-(-20+C)\\
= C+20-C\\
= 20\)
15.

Simplify \(\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\)

A. \(\frac{11}{12}\)

B. \(\frac{5}{6}\)

C. \(\frac{1}{5}\)

D. \(\frac{2}{15}\)

Detailed Solution

\(\frac{\frac{7}{9}-\frac{2}{3}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\\
=\frac{\frac{7-6}{9}}{\frac{1}{3}+\frac{\frac{2}{5}}{\frac{4}{5}}}\\
=\frac{\frac{1}{9}}{\frac{1}{3}+\left(\frac{2}{5}\times \frac{5}{4}\right)}\\
=\frac{\frac{1}{9}}{\frac{1}{3}+\frac{1}{2}}\
=\frac{\frac{1}{9}}{\frac{2+3}{6}}\\
=\frac{\frac{1}{9}}{\frac{5}{6}}\\
=\frac{1}{9}\times\frac{6}{5}\\
=\frac{2}{15}\)
16.

If m:n = 13:11, find m\(^2\) - n\(^2\) : (m + n)\(^2\)

A. 1:11

B. 1:13

C. 1:10

D. 1:12

Detailed Solution

m : n = 13 : 11
m\(^2\) - n\(^2\) : (m + n)2
= 13\(^2\) - 11\(^2\) : (13 + 11)\(^2\)
= 169 - 121 : 24\(^2\)
= 48 : 576
= 1 : 12
17.

Calculate the logarithm to base 9 of 3-4 * 92 * (81)-1

A. 2

B. zero

C. -2

D. -4

Detailed Solution

\(3^{-4}\times 9^2 \times 81^{-1}\\
=log_9 (3^{-4}\times 9^2 \times 81^{-1})\\
=log_9 \left(\frac{1}{3^4}\times 9^2 \times \frac{1}{81}\right)\\
=log_9 \left(\frac{1}{81}\times \frac{81}{1}\times \frac{1}{81}\right)\\
=log_9 \frac{1}{81}\\
=log_9 \frac{1}{9^2}\\
=log_9 9^{-2}\\
=-2log_9 9\\
-2 \times 1\\
=-2\)
18.

If (K2)\(_6\) * 3\(_6\) = 3\(_5\)(K4)\(_5\), what is the value of k?

A. 1

B. 4

C. 3

D. 2

Detailed Solution

(K2)\(_6\) * 3\(_6\) = 3\(_5\)(K4)\(_5\)
(K*6\(^1\) + 2*6\(^0\)) 3*6\(^0\) = 3*5\(^0\)(K*5\(^1\) + 4*5\(^0\))
3(6K + 2) = 3(5K + 4)
6K + 2 = 5K + 4
6K - 5K = 4 - 2
K = 2
19.

In a small village of 500 people, 350 speak the local language while 200 speak pidgin English. What percentage of the population speak both.

A. 30%

B. 10%

C. 50%

D. 14%

Detailed Solution

Let n(L∩P) = x
n(L) only = 350 - x
n(P) only = 200 - x
∴350 - x + x + 200 - x = 500
550 - x = 500
x = 550 - 500
x = 50 speak both
∴x% = (50/500) * (100/1)
= 10%
20.

Find the tax on an income of N20,000 if no tax is paid on the first N10,000 and tax is paid at N50 in N1000 on the next N5000 and at N55 in N1000 on the remainder

A. N500

B. N552

C. N255

D. N525

Detailed Solution

N20,000 - N10,000 = N10,000
1st tax on N5000 at N50 per N1000
= 5*50 = N250
2nd tax on the remaining N5000 at N55 per N1000 = 5*55 = N275
Total tax paid = N250 + N275
= N525