Year : 
1999
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 45 Questions

# Question Ans
21.

Find the tangent to the acute angle between the lines 2x + y = 3 and 3x - 2y = 5.

A. -7/4

B. 7/8

C. 7/4

D. 7/2

Detailed Solution

Let \(\phi\) be the angle between the two lines.
tan \(\phi\) = \(\frac{m_1 - m_2}{1 + m_1 m_2}\)
where m\(_1\) = slope of line 1; m\(_2\) = slope of line 2.
Line 1: 2x + y = 3 \(\implies\) y = 3 - 2x.
Line 2: 3x - 2y = 5 \(\implies\) -2y = 5 - 3x.
y = \(\frac{3}{2}\)x - \(\frac{5}{2}\).
m\(_1\) = -2, m\(_2\) = \(\frac{3}{2}\).
tan \(\phi\) = \(\frac{-2 - \frac{3}{2}}{1 + (-2 \times \frac{3}{2})}\)
= \(\frac{\frac{-7}{2}}{-2}\)
\(\therefore\) Tan \(\phi\) = \(\frac{7}{4}\).
22.

From a point P, the bearings of two points Q and R are N670W and N230E respectively. If the bearing of R from Q is N680E and PQ = 150m, calculate PR

A. 120m

B. 140m

C. 150m

D. 160m

C

23.

Find the equation of the locus of a point P(x,y) such that PV = PW, where V = (1,1) and W = (3,5)

A. 2x + 2y = 9

B. 2x + 3y = 8

C. 2x + y = 9

D. x + 2y = 8

Detailed Solution

The locus of a point P(x,y) such that PV = PW where V = (1,1) and W = (3,5). This means that the point P moves so that its distance from V and W are equidistance.

PV = PW

\(\sqrt{(x-1)^{2} + (y-1)^{2}} = \sqrt{(x-3)^{2}
+ (y-5)^{2}}\).

Squaring both sides of the equation,
(x-1)2 + (y-1)2 = (x-3)2 + (y-5)2.

x2-2x+1+y2-2y+1 = x2-6x+9+y2-10y+25

Collecting like terms and solving, x + 2y = 8.
24.

Find the area bounded by the curve y = x(2-x). The x-axis, x = 0 and x = 2.

A. 4 sq units

B. 2 sq units

C. \(\frac{4}{3}sq\hspace{1 mm}units\)

D. \(\frac{1}{3}sq\hspace{1 mm}units\)

Detailed Solution

\(y = x(2-x) \Rightarrow y= 2x - x^{2};

\int^{2}_{0}(2x-x^{2} = (x^{2}-\frac{x{3}}{3})^{2}\\
solving further gives (4 - \frac{1}{3} * 8) - (0) = \frac{4}{3} sq\hspace{1 mm}unit\)
25.

Evaluate: \(\int^{z}_{0}(sin x - cos x) dx \hspace{1mm}

Where\hspace{1mm}letter\hspace{1mm}z = \frac{\pi}{4}. (\pi = pi)\)

A. \(\sqrt{2 +1}\)

B. \(\sqrt{2 }-1\)

C. \(-\sqrt{2 }-1\)

D. \(1-\sqrt{2}\)

B

26.

Find the volume of solid generated when the area enclosed by y = 0, y = 2x, and x = 3 is rotated about the x-axis.

A. 81 π cubic units

B. 36 π cubic units

C. 18 π cubic units

D. 9 π cubic units

Detailed Solution

\(y = 2x \\ V = \int\pi^{2}dy \\ but\hspace{1mm}y = 2x \\ V = \int\pi4x^{2}dx\\ V = \frac{4(3)^{3}\pi}{3}-\frac{4(3)^{3}\pi}{3}\\V=\frac{4*27\pi}{3} = 36\pi \hspace{1mm}cubic\hspace{1mm}units\)
27.

What is the derivative of t2 sin (3t - 5) with respect to t?

A. 6t cos (3t - 5)

B. 2t sin (3t - 5) - 3t2 cos (3t - 5)

C. 2t sin (3t - 5) + 3t2 cos (3t - 5)

D. 2t sin (3t - 5) + t2 cos 3t

Detailed Solution

t2 sin (3t - 5) = 2t sin ( 3t - 5) + t2 x 3 cos (3t - 5) = 2t sin (3t - 5) + 3t2 cos (3t - 5).

Detailed answer below was provided by Ifechuks, a female prospective student of Okopoly.
28.

Evaluate \(\int^{1}_{-2}(x-1)^{2}dx\)

A. \(\frac{-10}{3}\)

B. 7

C. 9

D. 11

C

29.

Find the value of x for which the function y = x3 - x has a minimum value.

A. \(-\sqrt{3}\)

B. \(-\sqrt{\frac{3}{3}}\)

C. \(\sqrt{\frac{3}{3}}\)

D. \(\sqrt{3}\)

C

30.

If the minimum value of y = 1 + hx - 3x2 is 13, find h.

A. 13

B. 12

C. 11

D. 10

B

21.

Find the tangent to the acute angle between the lines 2x + y = 3 and 3x - 2y = 5.

A. -7/4

B. 7/8

C. 7/4

D. 7/2

Detailed Solution

Let \(\phi\) be the angle between the two lines.
tan \(\phi\) = \(\frac{m_1 - m_2}{1 + m_1 m_2}\)
where m\(_1\) = slope of line 1; m\(_2\) = slope of line 2.
Line 1: 2x + y = 3 \(\implies\) y = 3 - 2x.
Line 2: 3x - 2y = 5 \(\implies\) -2y = 5 - 3x.
y = \(\frac{3}{2}\)x - \(\frac{5}{2}\).
m\(_1\) = -2, m\(_2\) = \(\frac{3}{2}\).
tan \(\phi\) = \(\frac{-2 - \frac{3}{2}}{1 + (-2 \times \frac{3}{2})}\)
= \(\frac{\frac{-7}{2}}{-2}\)
\(\therefore\) Tan \(\phi\) = \(\frac{7}{4}\).
22.

From a point P, the bearings of two points Q and R are N670W and N230E respectively. If the bearing of R from Q is N680E and PQ = 150m, calculate PR

A. 120m

B. 140m

C. 150m

D. 160m

C

23.

Find the equation of the locus of a point P(x,y) such that PV = PW, where V = (1,1) and W = (3,5)

A. 2x + 2y = 9

B. 2x + 3y = 8

C. 2x + y = 9

D. x + 2y = 8

Detailed Solution

The locus of a point P(x,y) such that PV = PW where V = (1,1) and W = (3,5). This means that the point P moves so that its distance from V and W are equidistance.

PV = PW

\(\sqrt{(x-1)^{2} + (y-1)^{2}} = \sqrt{(x-3)^{2}
+ (y-5)^{2}}\).

Squaring both sides of the equation,
(x-1)2 + (y-1)2 = (x-3)2 + (y-5)2.

x2-2x+1+y2-2y+1 = x2-6x+9+y2-10y+25

Collecting like terms and solving, x + 2y = 8.
24.

Find the area bounded by the curve y = x(2-x). The x-axis, x = 0 and x = 2.

A. 4 sq units

B. 2 sq units

C. \(\frac{4}{3}sq\hspace{1 mm}units\)

D. \(\frac{1}{3}sq\hspace{1 mm}units\)

Detailed Solution

\(y = x(2-x) \Rightarrow y= 2x - x^{2};

\int^{2}_{0}(2x-x^{2} = (x^{2}-\frac{x{3}}{3})^{2}\\
solving further gives (4 - \frac{1}{3} * 8) - (0) = \frac{4}{3} sq\hspace{1 mm}unit\)
25.

Evaluate: \(\int^{z}_{0}(sin x - cos x) dx \hspace{1mm}

Where\hspace{1mm}letter\hspace{1mm}z = \frac{\pi}{4}. (\pi = pi)\)

A. \(\sqrt{2 +1}\)

B. \(\sqrt{2 }-1\)

C. \(-\sqrt{2 }-1\)

D. \(1-\sqrt{2}\)

B

26.

Find the volume of solid generated when the area enclosed by y = 0, y = 2x, and x = 3 is rotated about the x-axis.

A. 81 π cubic units

B. 36 π cubic units

C. 18 π cubic units

D. 9 π cubic units

Detailed Solution

\(y = 2x \\ V = \int\pi^{2}dy \\ but\hspace{1mm}y = 2x \\ V = \int\pi4x^{2}dx\\ V = \frac{4(3)^{3}\pi}{3}-\frac{4(3)^{3}\pi}{3}\\V=\frac{4*27\pi}{3} = 36\pi \hspace{1mm}cubic\hspace{1mm}units\)
27.

What is the derivative of t2 sin (3t - 5) with respect to t?

A. 6t cos (3t - 5)

B. 2t sin (3t - 5) - 3t2 cos (3t - 5)

C. 2t sin (3t - 5) + 3t2 cos (3t - 5)

D. 2t sin (3t - 5) + t2 cos 3t

Detailed Solution

t2 sin (3t - 5) = 2t sin ( 3t - 5) + t2 x 3 cos (3t - 5) = 2t sin (3t - 5) + 3t2 cos (3t - 5).

Detailed answer below was provided by Ifechuks, a female prospective student of Okopoly.
28.

Evaluate \(\int^{1}_{-2}(x-1)^{2}dx\)

A. \(\frac{-10}{3}\)

B. 7

C. 9

D. 11

C

29.

Find the value of x for which the function y = x3 - x has a minimum value.

A. \(-\sqrt{3}\)

B. \(-\sqrt{\frac{3}{3}}\)

C. \(\sqrt{\frac{3}{3}}\)

D. \(\sqrt{3}\)

C

30.

If the minimum value of y = 1 + hx - 3x2 is 13, find h.

A. 13

B. 12

C. 11

D. 10

B