Year : 
1986
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 48 Questions

# Question Ans
21.

Solve the equation 3x2 + 6x - 2 = 0

A. x = -1 \(\pm\) \(\frac{\sqrt{3}}{3}\)

B. x = -1 \(\pm\) \(\frac{\sqrt{15}}{3}\)

C. x = -2 \(\pm\) 2

D. x = 3 \(\pm\) \(\frac{\sqrt{3}}{15}\)

Detailed Solution

3x2 + 6x - 2 = 0

Using almighty formula i.e. x = \(\frac{b \pm \sqrt{b^2 - 4ac}}{2a}\)

a = 3, b = 6, c = -2

x = \(\frac{-6 \pm \sqrt{6^2 - 4(3)(-2)}}{2(3)}\)

x = \(\frac{-6 \pm \sqrt{36 + 24}}{6}\)

x = \(\frac{-6 \pm \sqrt{60}}{6}\)

x = \(\frac{-6 \pm \sqrt{4 \times 15}}{6}\)

x = \(-1 \pm \frac{\sqrt{15}}{3}\)
22.

Simplify \(\frac{1}{5x + 5}\) + \(\frac{1}{7x+ 7}\)

A. \(\frac{12}{35x + 1}\)

B. \(\frac{1}{35(x + 1)}\)

C. \(\frac{12x}{35(x + 7)}\)

D. \(\frac{12}{35x + 35}\)

Detailed Solution

\(\frac{1}{5x + 5}\) + \(\frac{1}{7x+ 7}\) = \(\frac{1}{5(x + 1)}\) + \(\frac{1}{7(x + 1)}\)

= \(\frac{7 + 5}{35(x + 1)}\)

= \(\frac{12}{35(x + 1)}\)
23.

Factorize (4a + 3)2 - (3a - 2)2

A. (a + 1)(a + 5)

B. (a - 5)(7a - 1)

C. (a + 5)(7a + 1)

D. a(7a + 1)

Detailed Solution

(4a + 3)2 - (3a - 2)2 = a2 - b2

= (a + b)(a - b)

= [(4a + 3) + (3a - 2)][(4a + 3) + (3a - 2)]

= [(4a + 3 + 3a - 2)][(4a + 3 - 3a + 2)]

= (7a + 1)(a + 5)

∴ (a + 5)(7a + 1)
24.

If \(5^{(x + 2y)} = 5\) and \(4^{(x + 3y)} = 16\), find \(3^{(x + y)}\).

A. 7

B. 1

C. 3

D. 27

Detailed Solution

\(5^{(x + 2y)} = 5\)
∴ x + 2y = 1.....(i)

\(4^{(x + 3y)} = 16 = 4^2\)
x + 3y = 2 .....(ii)

x + 2y = 1.....(i)

x + 3y = 2......(ii)

y = 1

Substitute y = 1 into equation (i)
\(x + 2y = 1 \implies x + 2(1) = 1\)
\(x + 2 = 1 \implies x = -1\)
\(\therefore 3^{(x + y)} = 3^{(-1 + 1)}\)
\(3^{0} = 1\)
25.

Simplify \(\frac{1}{x - 2}\) + \(\frac{1}{x + 2}\) + \(\frac{2x}{x^2 - 4}\)

A. \(\frac{2x}{(x - 2)(x + 2)(x^2 - 4)}\)

B. \(\frac{2x}{x^2 - 4}\)

C. \(\frac{x}{x^2 - 4}\)

D. \(\frac{4x}{x^2 - 4}\)

Detailed Solution

\(\frac{1}{x - 2}\) + \(\frac{1}{x + 2}\) + \(\frac{2x}{x^2 - 4}\)

= \(\frac{(x + 2) + (x - 2) + 2x}{(x + 2)(x - 2)}\)

= \(\frac{4x}{x^2 - 4}\)
26.

Make U the subject of the formula S = \(\sqrt{\frac{6}{u} - \frac{w}{2}}\)

A. u = \(\frac{12}{2s^2}\)

B. u = \(\frac{12}{2s+ w}\)

C. u = \(\frac{12}{2s^2 + w}\)

D. u = \(\frac{12}{2s^2}\) + w

Detailed Solution

S = \(\sqrt{\frac{6}{u} - \frac{w}{2}}\)

S = \(\frac{12 - uw}{2u}\)

2us2 = 12 - uw

u(2s2 + w) = 12

u = \(\frac{12}{2s^2 + w}\)
27.

Find the values of x which satisfy the equation 16x - 5 x 4x + 4 = 0

A. 1 and 4

B. -2 and 2

C. 0 and 1

D. -1 and 0

Detailed Solution

16x - 5 x 4x + 4 = 0

(4x)2 - 5(4x) + 4 = 0

let 4x = y

y2 - 5y + 4 = 0

(y - 4)(y - 1) = 0

y = 4 or 1

4x = 4

x = 1

4x = 1

i.e. 4x = 4o, x = 0

∴ x = 1 or 0
28.

If \(\frac{a}{c}\) = \(\frac{c}{d}\) = k, find the value of \(\frac{3a^2 - ac + c^2}{3b^2 - bd + d^2}\)

A. 3k2

B. 2k - k2

C. \(\frac{3b^2k^2 - bk^2d + dk^2}{3b^2 - bd + d^2}\)

D. k2

Detailed Solution

\(\frac{a}{c}\) = \(\frac{c}{d}\) = k

∴ \(\frac{a}{b}\) = bk

\(\frac{c}{d}\) = k

∴ c = dk

= \(\frac{3a^2 - ac + c^2}{3b^2 - bd + d^2}\)

= \(\frac{3(bk)^2 - (bk)(dk) + dk^2}{3b^2 - bd + a^2}\)

= \(\frac{3b^2k^2 - bk^2d + dk^2}{3b^2 - bd + d^2}\)

k = \(\frac{3b^2k^2 - bk^2d + dk^2}{3b^2 - bd + d^2}\)
29.

At what points does the straight line y = 2x + 1 intersect the curve y = 2x2 + 5x - 1?

A. (-2, -3) and(\(\frac{1}{2}\), 0)

B. (1, 0), (1, 3)

C. (4, 0) and (0,1)

D. 2, 0) and (0,1)

A

30.

If cos\(\theta\) = \(\frac{a}{b}\), find 1 + tan2\(\theta\)

A. \(\frac{b^2}{a^2}\)

B. \(\frac{a^2}{b^2}\)

C. \(\frac{a^2 + b^2}{b^2 - a^2}\)

D. \(\frac{2a^2 + b^2}{a^2 + b^2}\)

Detailed Solution

cos\(\theta\) = \(\frac{a}{b}\), Sin\(\theta\) = \(\sqrt{\frac{b^2 - a^2}{a}}\)

Tan\(\theta\) = \(\sqrt{\frac{b^2 - a^2}{a^2}}\), Tan 2 = \(\sqrt{\frac{b^2 - a^2}{a^2}}\)

1 + tan2\(\theta\) = 1 + \(\frac{b^2 - a^2}{a^2}\)

= \(\frac{a^2 + b^2 - a^2}{a^2}\)

= \(\frac{b^2}{a^2}\)
21.

Solve the equation 3x2 + 6x - 2 = 0

A. x = -1 \(\pm\) \(\frac{\sqrt{3}}{3}\)

B. x = -1 \(\pm\) \(\frac{\sqrt{15}}{3}\)

C. x = -2 \(\pm\) 2

D. x = 3 \(\pm\) \(\frac{\sqrt{3}}{15}\)

Detailed Solution

3x2 + 6x - 2 = 0

Using almighty formula i.e. x = \(\frac{b \pm \sqrt{b^2 - 4ac}}{2a}\)

a = 3, b = 6, c = -2

x = \(\frac{-6 \pm \sqrt{6^2 - 4(3)(-2)}}{2(3)}\)

x = \(\frac{-6 \pm \sqrt{36 + 24}}{6}\)

x = \(\frac{-6 \pm \sqrt{60}}{6}\)

x = \(\frac{-6 \pm \sqrt{4 \times 15}}{6}\)

x = \(-1 \pm \frac{\sqrt{15}}{3}\)
22.

Simplify \(\frac{1}{5x + 5}\) + \(\frac{1}{7x+ 7}\)

A. \(\frac{12}{35x + 1}\)

B. \(\frac{1}{35(x + 1)}\)

C. \(\frac{12x}{35(x + 7)}\)

D. \(\frac{12}{35x + 35}\)

Detailed Solution

\(\frac{1}{5x + 5}\) + \(\frac{1}{7x+ 7}\) = \(\frac{1}{5(x + 1)}\) + \(\frac{1}{7(x + 1)}\)

= \(\frac{7 + 5}{35(x + 1)}\)

= \(\frac{12}{35(x + 1)}\)
23.

Factorize (4a + 3)2 - (3a - 2)2

A. (a + 1)(a + 5)

B. (a - 5)(7a - 1)

C. (a + 5)(7a + 1)

D. a(7a + 1)

Detailed Solution

(4a + 3)2 - (3a - 2)2 = a2 - b2

= (a + b)(a - b)

= [(4a + 3) + (3a - 2)][(4a + 3) + (3a - 2)]

= [(4a + 3 + 3a - 2)][(4a + 3 - 3a + 2)]

= (7a + 1)(a + 5)

∴ (a + 5)(7a + 1)
24.

If \(5^{(x + 2y)} = 5\) and \(4^{(x + 3y)} = 16\), find \(3^{(x + y)}\).

A. 7

B. 1

C. 3

D. 27

Detailed Solution

\(5^{(x + 2y)} = 5\)
∴ x + 2y = 1.....(i)

\(4^{(x + 3y)} = 16 = 4^2\)
x + 3y = 2 .....(ii)

x + 2y = 1.....(i)

x + 3y = 2......(ii)

y = 1

Substitute y = 1 into equation (i)
\(x + 2y = 1 \implies x + 2(1) = 1\)
\(x + 2 = 1 \implies x = -1\)
\(\therefore 3^{(x + y)} = 3^{(-1 + 1)}\)
\(3^{0} = 1\)
25.

Simplify \(\frac{1}{x - 2}\) + \(\frac{1}{x + 2}\) + \(\frac{2x}{x^2 - 4}\)

A. \(\frac{2x}{(x - 2)(x + 2)(x^2 - 4)}\)

B. \(\frac{2x}{x^2 - 4}\)

C. \(\frac{x}{x^2 - 4}\)

D. \(\frac{4x}{x^2 - 4}\)

Detailed Solution

\(\frac{1}{x - 2}\) + \(\frac{1}{x + 2}\) + \(\frac{2x}{x^2 - 4}\)

= \(\frac{(x + 2) + (x - 2) + 2x}{(x + 2)(x - 2)}\)

= \(\frac{4x}{x^2 - 4}\)
26.

Make U the subject of the formula S = \(\sqrt{\frac{6}{u} - \frac{w}{2}}\)

A. u = \(\frac{12}{2s^2}\)

B. u = \(\frac{12}{2s+ w}\)

C. u = \(\frac{12}{2s^2 + w}\)

D. u = \(\frac{12}{2s^2}\) + w

Detailed Solution

S = \(\sqrt{\frac{6}{u} - \frac{w}{2}}\)

S = \(\frac{12 - uw}{2u}\)

2us2 = 12 - uw

u(2s2 + w) = 12

u = \(\frac{12}{2s^2 + w}\)
27.

Find the values of x which satisfy the equation 16x - 5 x 4x + 4 = 0

A. 1 and 4

B. -2 and 2

C. 0 and 1

D. -1 and 0

Detailed Solution

16x - 5 x 4x + 4 = 0

(4x)2 - 5(4x) + 4 = 0

let 4x = y

y2 - 5y + 4 = 0

(y - 4)(y - 1) = 0

y = 4 or 1

4x = 4

x = 1

4x = 1

i.e. 4x = 4o, x = 0

∴ x = 1 or 0
28.

If \(\frac{a}{c}\) = \(\frac{c}{d}\) = k, find the value of \(\frac{3a^2 - ac + c^2}{3b^2 - bd + d^2}\)

A. 3k2

B. 2k - k2

C. \(\frac{3b^2k^2 - bk^2d + dk^2}{3b^2 - bd + d^2}\)

D. k2

Detailed Solution

\(\frac{a}{c}\) = \(\frac{c}{d}\) = k

∴ \(\frac{a}{b}\) = bk

\(\frac{c}{d}\) = k

∴ c = dk

= \(\frac{3a^2 - ac + c^2}{3b^2 - bd + d^2}\)

= \(\frac{3(bk)^2 - (bk)(dk) + dk^2}{3b^2 - bd + a^2}\)

= \(\frac{3b^2k^2 - bk^2d + dk^2}{3b^2 - bd + d^2}\)

k = \(\frac{3b^2k^2 - bk^2d + dk^2}{3b^2 - bd + d^2}\)
29.

At what points does the straight line y = 2x + 1 intersect the curve y = 2x2 + 5x - 1?

A. (-2, -3) and(\(\frac{1}{2}\), 0)

B. (1, 0), (1, 3)

C. (4, 0) and (0,1)

D. 2, 0) and (0,1)

A

30.

If cos\(\theta\) = \(\frac{a}{b}\), find 1 + tan2\(\theta\)

A. \(\frac{b^2}{a^2}\)

B. \(\frac{a^2}{b^2}\)

C. \(\frac{a^2 + b^2}{b^2 - a^2}\)

D. \(\frac{2a^2 + b^2}{a^2 + b^2}\)

Detailed Solution

cos\(\theta\) = \(\frac{a}{b}\), Sin\(\theta\) = \(\sqrt{\frac{b^2 - a^2}{a}}\)

Tan\(\theta\) = \(\sqrt{\frac{b^2 - a^2}{a^2}}\), Tan 2 = \(\sqrt{\frac{b^2 - a^2}{a^2}}\)

1 + tan2\(\theta\) = 1 + \(\frac{b^2 - a^2}{a^2}\)

= \(\frac{a^2 + b^2 - a^2}{a^2}\)

= \(\frac{b^2}{a^2}\)