Year : 
1986
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 48 Questions

# Question Ans
11.

The ages of Tosan and Isa differ by 6 and the product of their ages is 187. Write their ages in the form (x, y), where x > y.

A. (12, 6)

B. (23, 17)

C. (17, 11)

D. (18, 12)

Detailed Solution

x - y = 6.......(i)

xy = 187.......(ii)

From equation (i), x(6 + y)

sub. for x in equation (ii) = y(6 + y)

= 187

y2 + 6y = 187

y2 + 6y - 187 = 0

(y + 17)(y - 11) = 0

y = -17 or y = 11

y cannot be negative, y = 11

Sub. for y in equation(i) = x - 11

= 16

x = 6 + 11

= 17

∴(x, y) = (17, 11)
12.

In 1984, Ike was 24 yrs old and his father was 45 yrs old. In what year was Ike exactly half his father's age?

A. 1981

B. 1979

C. 1982

D. 1978

Detailed Solution

Let the no. of years be y

24 - y = \(\frac{1}{2}\)(45 - y)

45 - y = 2(24 - y)

45 - y = 48 - 2y

2y - y = 48 - 45

∴ y = 3

The exact year = 1984

1984 - 3 = 1981
13.

Simplify \((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)

A. \(\frac{\sqrt{3}}{\sqrt{5}}\)

B. \(\frac{2 \sqrt{3}}{7}\)

C. -2

D. -1

Detailed Solution

\((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)
\(\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}\)
\(\frac{(\sqrt{5} - \sqrt{3}) - (\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}\)
= \(\frac{\sqrt{5} - \sqrt{3} - \sqrt{5} - \sqrt{3}}{5 - \sqrt{15} + \sqrt{15} - 3}\)
= \(\frac{-2\sqrt{3}}{2}\)
= \(- \sqrt{3}\)
\(\therefore (\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}} = - \sqrt{3} \times \frac{1}{\sqrt{3}}\)
= \(-1\)
14.

Find n if log\(_{2}\) 4 + log\(_{2}\) 7 - log\(_{2}\) n = 1

A. 10

B. 14

C. 27

D. 28

Detailed Solution

log\(_2\) 4 + log\(_2\) 7 - log\(_2\) n = 1
= log\(_2\) (4 x 7) - log\(_2\) n = 1
\(\therefore\) log\(_2\) 28 - log\(_2\) n = 1
= \(\frac{28}{n} = 2^1\)
\(\frac{28}{n}\) = 2
2n = 28
∴ n = 14
15.

Simplify \(\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{3}}}{3^{-\frac{1}{6}} \times 3^{\frac{2}{3}}}\)

A. \(\frac{1}{3}\)

B. 1

C. 3

D. 9

Detailed Solution

\(\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{3}}}{3^{-\frac{1}{6}} \times 3^{\frac{2}{3}}}\) = \(\frac{(3^2)^{\frac{1}{3}} \times (3^3)^{-\frac{1}{3}}}{3^{-\frac{1}{6}} \times 3^{\frac{2}{3}}}\)

= \(\frac{3^{\frac{2}{3}} \times 3^{\frac{2}{3}}}{3^{-\frac{1}{6}} \times 3^{\frac{2}{3}}}\)

= \(\frac{3^{\frac{5}{6}}}{3^{-\frac{5}{6}}}\)

= 1
16.

If x varies directly as y3 and x = 2 when y = 1, find x when y = 5

A. 2

B. 10

C. 125

D. 250

Detailed Solution

x \(\alpha\) y3

x = ky3

k = \(\frac {x}{y^3}\)

when x = 2, y = 1

k = 2

Thus x = 2y3 - equation of variation

= 2(5)3

= 250
17.

Factorize completely 8a + 125ax3

A. (2a + 5x2)(4 + 26ax)

B. a(2 + 5x)(4 - 10x + 25x2)

C. (2a + 5x)(4 - 10ax + 25x2)

D. a(2 + 5x)(4 + 10ax + 25x2)

Detailed Solution

\(8a + 125ax^{3} = (2^{3})a + 5^{3} ax^{3}\)

= \(a(2^3 + 5^3 x^3)\)
∴\(a[2^3 + (5x)^3]\)

\(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)
∴ \(a(2^3 + (5x)^3)\)
= \(a(2 + 5x)(4 - 10x + 25x^2)\)
18.

If y = \(\frac{x}{x - 3}\) + \(\frac{x}{x + 4}\) find y when x = -2

A. -\(\frac{3}{5}\)

B. \(\frac{3}{5}\)

C. -\(\frac{7}{5}\)

D. \(\frac{2}{5}\)

Detailed Solution

y = \(\frac{x}{x - 3}\) + \(\frac{x}{x + 4}\) when x = -2

y = \(\frac{-2}{-5}\) + \(\frac{(-2)}{-2 + 4}\)

= \(\frac{2}{5}\) + \(\frac{-2}{2}\)

= \(\frac{4 -10}{10}\)

= \(\frac{-6}{10}\)

= -\(\frac{3}{5}\)
19.

Find all real numbers x which satisfy the inequality \(\frac{1}{3}\)(x + 1) - 1 > \(\frac{1}{5}\)(x + 4)

A. x < 11

B. x < -1

C. x > 6

D. x > 11

Detailed Solution

\(\frac{1}{3}\)(x + 1) - 1 > \(\frac{1}{5}\)(x + 4)

= \(\frac{x + 1}{3}\) - 1 > \(\frac{x + 4}{5}\)

\(\frac{x + 1}{3}\) - \(\frac{x + 4}{5}\) - 1 > 0

= \(\frac{5x + 5 - 3x - 12}{15}\)

= 2x - 7 > 15

= 2x > 22

= x > 11
20.

Factorize \(x^2 + 2a + ax + 2x\)

A. (x + 2a)(x + 1)

B. (x + 2a)(x - 1)

C. (x2 - 1)(x - a)

D. (x + 2)(x + a)

Detailed Solution

\(x^{2} + 2a + ax + 2x\)
\(x^{2} + 2a + ax + 2x\)
\(x(x + 2) + a(x + 2)\)
\((x + 2)(x + a)\)
11.

The ages of Tosan and Isa differ by 6 and the product of their ages is 187. Write their ages in the form (x, y), where x > y.

A. (12, 6)

B. (23, 17)

C. (17, 11)

D. (18, 12)

Detailed Solution

x - y = 6.......(i)

xy = 187.......(ii)

From equation (i), x(6 + y)

sub. for x in equation (ii) = y(6 + y)

= 187

y2 + 6y = 187

y2 + 6y - 187 = 0

(y + 17)(y - 11) = 0

y = -17 or y = 11

y cannot be negative, y = 11

Sub. for y in equation(i) = x - 11

= 16

x = 6 + 11

= 17

∴(x, y) = (17, 11)
12.

In 1984, Ike was 24 yrs old and his father was 45 yrs old. In what year was Ike exactly half his father's age?

A. 1981

B. 1979

C. 1982

D. 1978

Detailed Solution

Let the no. of years be y

24 - y = \(\frac{1}{2}\)(45 - y)

45 - y = 2(24 - y)

45 - y = 48 - 2y

2y - y = 48 - 45

∴ y = 3

The exact year = 1984

1984 - 3 = 1981
13.

Simplify \((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)

A. \(\frac{\sqrt{3}}{\sqrt{5}}\)

B. \(\frac{2 \sqrt{3}}{7}\)

C. -2

D. -1

Detailed Solution

\((\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}}\)
\(\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}\)
\(\frac{(\sqrt{5} - \sqrt{3}) - (\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}\)
= \(\frac{\sqrt{5} - \sqrt{3} - \sqrt{5} - \sqrt{3}}{5 - \sqrt{15} + \sqrt{15} - 3}\)
= \(\frac{-2\sqrt{3}}{2}\)
= \(- \sqrt{3}\)
\(\therefore (\frac{1}{\sqrt{5} + \sqrt{3}} - \frac{1}{\sqrt{5} - \sqrt{3}}) \times \frac{1}{\sqrt{3}} = - \sqrt{3} \times \frac{1}{\sqrt{3}}\)
= \(-1\)
14.

Find n if log\(_{2}\) 4 + log\(_{2}\) 7 - log\(_{2}\) n = 1

A. 10

B. 14

C. 27

D. 28

Detailed Solution

log\(_2\) 4 + log\(_2\) 7 - log\(_2\) n = 1
= log\(_2\) (4 x 7) - log\(_2\) n = 1
\(\therefore\) log\(_2\) 28 - log\(_2\) n = 1
= \(\frac{28}{n} = 2^1\)
\(\frac{28}{n}\) = 2
2n = 28
∴ n = 14
15.

Simplify \(\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{3}}}{3^{-\frac{1}{6}} \times 3^{\frac{2}{3}}}\)

A. \(\frac{1}{3}\)

B. 1

C. 3

D. 9

Detailed Solution

\(\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{3}}}{3^{-\frac{1}{6}} \times 3^{\frac{2}{3}}}\) = \(\frac{(3^2)^{\frac{1}{3}} \times (3^3)^{-\frac{1}{3}}}{3^{-\frac{1}{6}} \times 3^{\frac{2}{3}}}\)

= \(\frac{3^{\frac{2}{3}} \times 3^{\frac{2}{3}}}{3^{-\frac{1}{6}} \times 3^{\frac{2}{3}}}\)

= \(\frac{3^{\frac{5}{6}}}{3^{-\frac{5}{6}}}\)

= 1
16.

If x varies directly as y3 and x = 2 when y = 1, find x when y = 5

A. 2

B. 10

C. 125

D. 250

Detailed Solution

x \(\alpha\) y3

x = ky3

k = \(\frac {x}{y^3}\)

when x = 2, y = 1

k = 2

Thus x = 2y3 - equation of variation

= 2(5)3

= 250
17.

Factorize completely 8a + 125ax3

A. (2a + 5x2)(4 + 26ax)

B. a(2 + 5x)(4 - 10x + 25x2)

C. (2a + 5x)(4 - 10ax + 25x2)

D. a(2 + 5x)(4 + 10ax + 25x2)

Detailed Solution

\(8a + 125ax^{3} = (2^{3})a + 5^{3} ax^{3}\)

= \(a(2^3 + 5^3 x^3)\)
∴\(a[2^3 + (5x)^3]\)

\(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)
∴ \(a(2^3 + (5x)^3)\)
= \(a(2 + 5x)(4 - 10x + 25x^2)\)
18.

If y = \(\frac{x}{x - 3}\) + \(\frac{x}{x + 4}\) find y when x = -2

A. -\(\frac{3}{5}\)

B. \(\frac{3}{5}\)

C. -\(\frac{7}{5}\)

D. \(\frac{2}{5}\)

Detailed Solution

y = \(\frac{x}{x - 3}\) + \(\frac{x}{x + 4}\) when x = -2

y = \(\frac{-2}{-5}\) + \(\frac{(-2)}{-2 + 4}\)

= \(\frac{2}{5}\) + \(\frac{-2}{2}\)

= \(\frac{4 -10}{10}\)

= \(\frac{-6}{10}\)

= -\(\frac{3}{5}\)
19.

Find all real numbers x which satisfy the inequality \(\frac{1}{3}\)(x + 1) - 1 > \(\frac{1}{5}\)(x + 4)

A. x < 11

B. x < -1

C. x > 6

D. x > 11

Detailed Solution

\(\frac{1}{3}\)(x + 1) - 1 > \(\frac{1}{5}\)(x + 4)

= \(\frac{x + 1}{3}\) - 1 > \(\frac{x + 4}{5}\)

\(\frac{x + 1}{3}\) - \(\frac{x + 4}{5}\) - 1 > 0

= \(\frac{5x + 5 - 3x - 12}{15}\)

= 2x - 7 > 15

= 2x > 22

= x > 11
20.

Factorize \(x^2 + 2a + ax + 2x\)

A. (x + 2a)(x + 1)

B. (x + 2a)(x - 1)

C. (x2 - 1)(x - a)

D. (x + 2)(x + a)

Detailed Solution

\(x^{2} + 2a + ax + 2x\)
\(x^{2} + 2a + ax + 2x\)
\(x(x + 2) + a(x + 2)\)
\((x + 2)(x + a)\)