Year : 
2017
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

31 - 40 of 49 Questions

# Question Ans
31.

Given that t = \(2 ^{-x}\), find \(2 ^{x + 1}\) in terms of t.

A. \(\frac{2}{t}\)

B. \(\frac{t}{2}\)

C. \(\frac{1}{2t}\)

D. t

Detailed Solution

t = \(2^{-x} = \frac{1}{2^{x}}\)
\(\implies 2^{x} =\frac{1}{t}\)
\(2^{x+1} = 2^{x} \times 2^{1}\)
= \(\frac{1}{t} \times 2 = \frac{2}{t}\)
32.

Two bottles are drawn with replacement from a crate containing 8 coke, 12 and 4 sprite bottles. What is the probability that the first is coke and the second is not coke?

A. \(\frac{1}{12}\)

B. \(\frac{1}{6}\)

C. \(\frac{2}{9}\)

D. \(\frac{3}{8}\)

Detailed Solution

Total = 8 + 12 + 4
= 24
\(\frac{8}{24} \times (\frac{12}{24} + \frac{4}{24}\))
= \(\frac{1}{3} \times (\frac{1}{2} + \frac{1}{6}\))
= \(\frac{1}{3} \times \frac{3 + 1}{6}\)
\(\frac{1}{3} \times \frac{4}{6} = \frac{2}{9}\)
33.

If the simple interest on a certain amount of money saved in a bank for 5 years at 2\(\frac{1}{2}\)% annum is N500.00, calculate the total amount due after 6 years at the same rate

A. N2,500.00

B. N2,600.00

C. N4,500.00

D. N4,600.00

Detailed Solution

P = \(\frac{100l}{RT} = \frac{100 \times 500}{5 \times 2.5} = \frac{50,000}{12.5}\)
= 4,000
Annual interest is \(\frac{500}{5}\) = 100
for 6 year = 4,000 + 100 + 100 + 100 + 100 + 100 + 100
= N 4,600
34.

Calculate the variance of 2, 3, 3, 4, 5, 5, 5, 7, 7 and 9

A. 2.2

B. 3.4

C. 4.0

D. 4.2

Detailed Solution

x = \(\frac{2 + 3 + 3 + 4 + 5 + 5+ 5+ 7 + 7 + 9}{10}\)
=\(\frac{50}{10}\)
= 5
Variance = \(\frac{\sum{(x - x})^2}{N}\)
\(\frac{9 + 4+ 4+ 1 + 4 + 4 + 16}{10}\)
= \(\frac{42}{10}\)
= 4.2
35.

A circular pond of radius 4m has a path of width 2.5m round it. Find, correct to two decimal places, the area of the path. [Take\(\frac{22}{7}\)]

A. 7.83\(m^2\)

B. 32.29\(m^2\)

C. 50.29\(m^2\)

D. 82.50\(m^2\)

Detailed Solution

Area of path = Area of (pond+path) - Area of pond
The area of the pond with the path: The radius = (4 + 2.5)m = 6.5m
Area = \(\pi \times r^{2}\) = \(\frac{22}{7} \times 6.5^{2} \approxeq 132.79m^{2}\)
Area of the pond = \(\frac{22}{7} \times 4^{2} \approxeq 50.29m^{2}\)
Area of the path = (132.79 - 50.29)m^{2} = 82.50m^{2}\)
36.

Fig. 1 and Fig. 2 are the addition and multiplication tables respectively in modulo 5. Use these tables to solve the equation (n \(\oplus 4\))

A. 1

B. 2

C. 3

D. 4

Detailed Solution

(n \(\oplus\) 4) \(\oplus\) 3 = 0 (mod 5)
(3 \(\oplus\) 4) \(\oplus\) 3
12 \(\oplus\) 3 = 15 (mod 5)
(5 x 3 + 0) = 0 (mod 5)
37.

The diagram shows a circle centre O. if

A. 12\(^o\)

B. 15\(^o\)

C. 29\(^o\)

D. 34\(^o\)

Detailed Solution

SRT = 180 - (46 + 29) sum of < s in a
= 180 - 75
= 105
SOT = 2 x 46 < at the centre is twice all the circle = 92
RTO = 180 - (96 + 43)
= 41
STO = 41 - 29
= 12\(^o\)
38.

In the diagram, XY is a straight line. <POX = <POQ and <ROY = <QOR. Find the value of <POQ + <ROY.

A. 60\(^o\)

B. 90\(^o\)

C. 100\(^o\)

D. 120\(^o\)

Detailed Solution

<POX = <POQ; <ROY = QOR
2 <POQ + 2 <ROY = 180
2(<POQ = <ROY) = 180
<POQ + <ROY = 90

39.

The diagram shows a circle O. If < ZYW = 33\(^o\) , find < ZWX

A. 33\(^o\)

B. 57\(^o\)

C. 90\(^o\)

D. 100\(^o\)

Detailed Solution

In ZY = 90\(^o\) < subtends In a semi O
ZWY = 180 - (90\(^o\) + 33)
= 57
ZWX = 57 + 33 = 90\(^o\)
40.

In the diagram, PQ and PS are tangents to the circle O. If PSQ = m, <SPQ = n and <SQR = 33\(^o\), find the value of (m + n)

A. 103\(^o\)

B. 123\(^o\)

C. 133\(^o\)

D. 143\(^o\)

Detailed Solution

< SQP = 180 - (90 + 33) < on a ----
= 180 - (123)
= 57\(^o\)
Therefore, (m + n) = 123\(^o\)

31.

Given that t = \(2 ^{-x}\), find \(2 ^{x + 1}\) in terms of t.

A. \(\frac{2}{t}\)

B. \(\frac{t}{2}\)

C. \(\frac{1}{2t}\)

D. t

Detailed Solution

t = \(2^{-x} = \frac{1}{2^{x}}\)
\(\implies 2^{x} =\frac{1}{t}\)
\(2^{x+1} = 2^{x} \times 2^{1}\)
= \(\frac{1}{t} \times 2 = \frac{2}{t}\)
32.

Two bottles are drawn with replacement from a crate containing 8 coke, 12 and 4 sprite bottles. What is the probability that the first is coke and the second is not coke?

A. \(\frac{1}{12}\)

B. \(\frac{1}{6}\)

C. \(\frac{2}{9}\)

D. \(\frac{3}{8}\)

Detailed Solution

Total = 8 + 12 + 4
= 24
\(\frac{8}{24} \times (\frac{12}{24} + \frac{4}{24}\))
= \(\frac{1}{3} \times (\frac{1}{2} + \frac{1}{6}\))
= \(\frac{1}{3} \times \frac{3 + 1}{6}\)
\(\frac{1}{3} \times \frac{4}{6} = \frac{2}{9}\)
33.

If the simple interest on a certain amount of money saved in a bank for 5 years at 2\(\frac{1}{2}\)% annum is N500.00, calculate the total amount due after 6 years at the same rate

A. N2,500.00

B. N2,600.00

C. N4,500.00

D. N4,600.00

Detailed Solution

P = \(\frac{100l}{RT} = \frac{100 \times 500}{5 \times 2.5} = \frac{50,000}{12.5}\)
= 4,000
Annual interest is \(\frac{500}{5}\) = 100
for 6 year = 4,000 + 100 + 100 + 100 + 100 + 100 + 100
= N 4,600
34.

Calculate the variance of 2, 3, 3, 4, 5, 5, 5, 7, 7 and 9

A. 2.2

B. 3.4

C. 4.0

D. 4.2

Detailed Solution

x = \(\frac{2 + 3 + 3 + 4 + 5 + 5+ 5+ 7 + 7 + 9}{10}\)
=\(\frac{50}{10}\)
= 5
Variance = \(\frac{\sum{(x - x})^2}{N}\)
\(\frac{9 + 4+ 4+ 1 + 4 + 4 + 16}{10}\)
= \(\frac{42}{10}\)
= 4.2
35.

A circular pond of radius 4m has a path of width 2.5m round it. Find, correct to two decimal places, the area of the path. [Take\(\frac{22}{7}\)]

A. 7.83\(m^2\)

B. 32.29\(m^2\)

C. 50.29\(m^2\)

D. 82.50\(m^2\)

Detailed Solution

Area of path = Area of (pond+path) - Area of pond
The area of the pond with the path: The radius = (4 + 2.5)m = 6.5m
Area = \(\pi \times r^{2}\) = \(\frac{22}{7} \times 6.5^{2} \approxeq 132.79m^{2}\)
Area of the pond = \(\frac{22}{7} \times 4^{2} \approxeq 50.29m^{2}\)
Area of the path = (132.79 - 50.29)m^{2} = 82.50m^{2}\)
36.

Fig. 1 and Fig. 2 are the addition and multiplication tables respectively in modulo 5. Use these tables to solve the equation (n \(\oplus 4\))

A. 1

B. 2

C. 3

D. 4

Detailed Solution

(n \(\oplus\) 4) \(\oplus\) 3 = 0 (mod 5)
(3 \(\oplus\) 4) \(\oplus\) 3
12 \(\oplus\) 3 = 15 (mod 5)
(5 x 3 + 0) = 0 (mod 5)
37.

The diagram shows a circle centre O. if

A. 12\(^o\)

B. 15\(^o\)

C. 29\(^o\)

D. 34\(^o\)

Detailed Solution

SRT = 180 - (46 + 29) sum of < s in a
= 180 - 75
= 105
SOT = 2 x 46 < at the centre is twice all the circle = 92
RTO = 180 - (96 + 43)
= 41
STO = 41 - 29
= 12\(^o\)
38.

In the diagram, XY is a straight line. <POX = <POQ and <ROY = <QOR. Find the value of <POQ + <ROY.

A. 60\(^o\)

B. 90\(^o\)

C. 100\(^o\)

D. 120\(^o\)

Detailed Solution

<POX = <POQ; <ROY = QOR
2 <POQ + 2 <ROY = 180
2(<POQ = <ROY) = 180
<POQ + <ROY = 90

39.

The diagram shows a circle O. If < ZYW = 33\(^o\) , find < ZWX

A. 33\(^o\)

B. 57\(^o\)

C. 90\(^o\)

D. 100\(^o\)

Detailed Solution

In ZY = 90\(^o\) < subtends In a semi O
ZWY = 180 - (90\(^o\) + 33)
= 57
ZWX = 57 + 33 = 90\(^o\)
40.

In the diagram, PQ and PS are tangents to the circle O. If PSQ = m, <SPQ = n and <SQR = 33\(^o\), find the value of (m + n)

A. 103\(^o\)

B. 123\(^o\)

C. 133\(^o\)

D. 143\(^o\)

Detailed Solution

< SQP = 180 - (90 + 33) < on a ----
= 180 - (123)
= 57\(^o\)
Therefore, (m + n) = 123\(^o\)